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Quasi-two-dimensional transfer of elastic waves
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A theory for multiple scattering of elastic waves is presented in a heterogeneous plate bounded by two flat
free surfaces, whose horizontal size is infinite and whose transverse size is smaller than the mean free path of
the waves. We derive a time-dependent, quasi-two-dimensional radiative transfer eGuatitwo horizontal
dimensions with a finite number of vertical mgdbat describes the coupling of the eigenmodes of the layer
(surface Rayleigh waves, shear horizontal waves, and Lamb yvaMes fundamentally different element is
that the traction-free boundary conditions are treated on the level of the wave equation, whereas at the same
time elastic transfer can be considered over macroscopic horizontal distances. Expressions are found that relate
the small-scale fluctuations to the lifetime of the modes and to their mode-coupling rates. We discuss the
diffusion approximation that simplifies the mathematics of this model significantly, and which should apply at
large lapse times. Finally, this model facilitates a study of coherent backscattering near the plate surface for
different sources and for different detection configurations.
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[. INTRODUCTION properties of this equation will be addressed in detail for
elastic waves. A fundamentally different feature in this
Multiple scattering of waves in random media has beemmodel is that the vertical direction is treated on the micro-
studied throughout the previous centdy] and is still an  scopic level of the wave equations, and not on the macro-
active domain of researcf2,3]. The subject is rich in its scopic level of the transport equations. The latter usually
interdisciplinarity aspects, with roots in astrophysics, opticsprovide knowledge on scales comparable to and beyond the
acoustics, and quantum mechanics, with many fundamentahean free pattil]. Their compatibility with the underlying
problems, among which wave localization, the random lasewave equations is therefore regularly questioned, notably in
speckles, enhanced backscattefiag optics of liquid crys- the so-called mesoscopic regime where interference effects
tals[5,6], and(broken time-reversal symmetry7] are some seem to persist. In addition, several experiments require
contemporary examples. In addition, such studies have founkhowledge on length scales of the order of the wavelength,
potential applications, like in polymer dispersed liquid crys-particularly in the case of surface detection, where the
tals, in remote sensing, imedica) imaging, and in seismol-  boundary conditions have to be coped with on the level of
ogy. the wave equation. This, is for instance, true for the obser-
A general theory for multiple scattering is very complex. yation of seismic wave propagation in the crust, REfd.—
The reason is that it depends heavily on geometry and di17] or in the elastic coherent backscattering experiments by
mensionality, as well as on the nature of the waves. Differenfq Rosny, Tourin, and FinKL8] in silicon wafers. In ultra-

studies of multiple scattering consider different geometries iny,hic the conventional equation of elastic radiative transfer
which the scattering occurs, and for which some sort of sper < peen studied in great detfl9—22. The quasi-2D ap-
cific mathematical simplification facilitates a solution. In the proximation facilitates a study of many contemporary meso-

quasi-one-dimensionatuasi-10 geometry only the lowest . S
radial diffusion mode of a tube is excited, and is therefore>CoP'c phenomena, such as equipartition and coherent back

very useful for rigorous mesoscopic studies of transmissioﬁcatte”ng’ with the explicit consideration of the free surface.

fluctuations(see contributions in Ref8]). The “slab geom- h The setup of .th|sfpapt|ar IS as follows. lg Sec. I_:lv(\;efl_ook ﬁt
etry,” with “infinite” transverse width is the convenient ge- the wave equation for elastic waves, and we will define the

ometry employed to model optical laboratory experimentslGreen,S function for elastic wave propagation. In Sec. Il we

even in complex situation&]. Media with higher symmetry 'ntroduce small-scale fluctuations and define the ensemble-
are also regularly found. One-dimensional disordered sys@veraged Green's function. This provides us with the extinc-
tems are popular for their theoretical rigg@]. Two-  tion times of all elastic modes. They will serve to define our
dimensional random media are encountered in studies of théuasi-2D approximation. In Sec. 1V, the transport equation is
quantum Hall effect, plasmons, bending way&8g], and mi-  derived, which describes the time evolution of the ensemble-
crowaved 11], or in acoustic§12]. In seismology, dquas) averaged energy contents of all individual modes, and whose
2D picture might apply to the scattering of guided waves instationary solution exhibits equipartition of energy between
the crusf13]. all modes. In Sec. V, we discuss the application of the diffu-
The present work introduces the so-called quasi-2D apsion approximation to this quasi-2D model, introducing a
proximation. We will show that this approximation applies to NX N diffusion tensor forN modes. Finally, in Sec. VI we
radiative transfer in a geometry whose vertical size is smalleinvestigate coherent backscattering using our quasi-2D ap-
than the mean free path. It provides a radiative transfer equgroximation for different source and detection configura-
tion for modes, rather than for specific intensities. Manytions. Section VIl is devoted to conclusions and perspectives.
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II. A SCHRO DINGER-TYPE EQUATION
FOR ELASTIC WAVES Etot:J d3r[3 p(r)(du)®+ 3 N(r)(V-u)?+pu(r)efej].

In this section we will formulate the mathematics of elas- ®)
tic wave propagation in a way that is suited to apply conven-_ . . 2 -
tional methods in multiple scattering of waves. Many ele-ltr:S customary to split gff atg_rma(cz:u(rl u)t(gets_crlb;ng pure
ments have already been discussed very thoroughly b ear wa\l/e energyan th2'“|( ';’ tU) clon routing (:tconm-
Ryzhik et al.[23], and some will be recalled here for conve- ressional energyfrom the last term, leaving a rest term

nience[ 24]. We start with Newton’s second law for the elas- - -
tic displacement at timet and positionr, Etot:j d°r[z p(r)(du)=+ 3 (N(T)
p(r)dtu;=djoi;(r) +fi(r,t). )

+2u(r)(V-u)?+ 3 u(r)(curlu)2+1].  (6)
Here, p(r) is the local mass density(r, t) is an external

force per unit volume, and;;(r) is the stress tensor which, ;r;ﬁa:dg:gges,, f?suhre;rrgr?ezsy ”k;edtl;ne?li;%¥érer?2£n?er|?;-
by Hooke's law, is given by14,15,23 [17,25,28. The latter vanishes for plane waves with either
aij(r)=Cij(Ne(r)=Nr)eg(r) dij+2u(r)e;(r), pure transverse or pure longitudinal polarization. Following
(2 Ryzhik et al. [23] we shall now introduce the vector field,
with £,,=3(deu;+ d,u,) the strain tensor. As always, sum- A(r)
mation over repeated indices is assumed implicitly. The sec- o Pru
ond equality applies to an isotropic elastic medium, in which
case the fqurth—rank tens@rijm can only haye two indepen— W(r,t)= /p(r)m u | 7
dent contributions, proportional to the Lanmeoduli A(r) 2 Tt
and u(r). Inserting the expressiof2) of the stress tensor in .
Eq. (1) provides the wave equation for the elastic displace- —iVu(ns;;
mentu,
D 20 —TA () + w(r)19: dule— w(r)d: 6 U: where we have defined the operafpe —iV. This vector
PG =N+ u(1) ]9 p(F) 11 has 13 components among which only 9 are independent
=[N (r)](du) +2[ diu(r)]e;; +1i(r,1). sinceg;; is a symmetric tensor whose trace is proportional to
i kYk 2 i~ ji fl 3 i 1) i Yy - h i prop i !

i o ) the first componenty(\/2)p- u, of W. The physical interpre-
If the Lamecoefficientsk(r) andu(r) are independent af,  tation of the vector fieldl is made clear by introducing the
Eg. (3) further simplifies to the well-known wave equation cartesian scalar product

>,  A+2u m it
GuU= — iy YV U S VXYXu= s @) <\If<t>|\lr<t>>§fd3r\v<r,t>*-\v<r,t>=Emt, ®)

where the second term of the left-hand side of &g.corre- . .

sponds to a compressional bulk wafaso calledP wave i.e., the total elastic energff). As a result, can be re-
F;}. h ¢ P ith th locity, = \X+ 2/ p(r) and garded as @omplex amplitude for elastic energyhe first

which propagates wi e velocity,= #lp(r) an and third components oF correspond to th@otential en-

tme th'Ld ”t(erm of the 'e“'h‘?‘?]d S:de. of EE4\)/dicr|bes a ergy amplitude while the second component describes the
shear bulk wave § wave with velocity vs=u/p(r). For |inegic energy amplitude. Moreover, it can readily be

reasons that will become clear in the following sections, We.packed that the wave equatiéd) is equivalent to the fol-
will not use the form(3) of the elastic wave equation but lowing Schialinger-type equation foW [23]:

formulate an equivalent equation more suitable for the pur-

pose of elastic wave scattering and transport. i3 W(r,t))=K(r,p)- |[W(t))+|W(t)), 9)
The total energy of the elastic displacemaris given by
[25] with the time-evolution operator
0 W) — 0
rp
Vp(r) 0
1 o 1 =
K=| —=pl| JA\(r) 0 L(p)lvV2u(r) 10)
Vp(r) P ! Vp(r) b # (
N 1
0Ll V2u(OE(p) | l——= 0
® p o] 0l
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and the external force termW(r,t)=[0,—f(r,t)/

\/p(r),f)]. We have introduced the third rank tengaqyi(p)
=3(pidk+p;Sik) and used the formal Dirac notation for

_ bulk P

vector fields to facilitate later the more convenient mode ‘? bulk S

base. The number of arrows determines the order of the ten- 3

sor. For clarity, we have put horizontal arrows when they g

contract in a right-hand side product with a vectorA[fr) = Rayleigh

and w(r) are real valued, the matriK is manifestly sym-

metrical with respect to the ordinary Cartesian scalar product .
mode index

(8.
Equation (9) can easily be Laplace transformed @m
>0). This yields the solution

[W(2))=[z— K] '[i[W(t=0))+|W(2))]. (1)

The operatof z—K] '=G(z) will be called the Green’s
function, and is introduced here for future need. It is conve-
nient to definet=0 just before the source sets in so that FIG. 1. Schematic plot of the dispersion law of the elastic
Y (t=0)=0 and the force field becomes the source for waveRayleigh-Lamb eigenmodes in a layer bounded by two free sur-
propagation. faces. Bold lines indicate symmetric branches, straight lines indi-
We would like to point out that the description of elastic cate antisymmetric modes. Only modes of different symmetry are
waves in terms of the vector fied and its time-evolution allowed to cross. The two dashed lines indicate the pure shear or
equation(9) is mathematically equivalent to the wave equa-Pure compressional excitations. The surface Rayleigh waves propa-

— Parallel Wave Number

tion (3) even when the mass density and the Lamoeffi- ~ gate somewhat slower than pusavaves. For an actual calculation
cients depend on. The formulation(9) is more convenient ©f the dispersion laws we refer to Fig. 2 of Wea{27].
to study elastic wave scattering and transport. Figure 1 gives a schematic plot of the dispersion law of
Lamb modes. The representatiéf) of each mode can be
I1l. PROPAGATION OF ELASTIC WAVES IN A LAYER obtained straightforwardly from its displacement and we

] ) o shall denote it byW,,. The indexn is a discrete index that

We can|de.r a heteroger_leous eIasuc_pIate of |nf|n|te.hor|rabe|s, at constant frequendig. 1), the symmetric and an-
zontal dimension and of thickness In this paper, we will  tisymmetric Lamb modes and symmetric and antisymmetric
assume that both sides of the plate are free surfaces and \@ modes in the plate.
therefore neglect any leakage of energy out of the plate. Let us discuss the Lamb modes at a given frequency, in-
Leaking of energy is an additional complex problem that will dicated by the horizontal line in Fig. 1, in the direction of the
be considered in future work. The present model incorpoarrow. The two dashed lines indicate purely shear and purely
rates coherent reflection, mode conversions, and, most incompressional waves. The first two antisymmetric modes
portantly, surface Rayleigh waves at the surfaces of the platéfirst two black dots on the rightare the symmetric and

The disorder in the plate will be modeled by random fluc-antisymmetric Rayleigh surface modes, respectively. Their
tuations of the mass densip(r), and the Lameoefficients ~ displacement is evanescent _for both the compressional and
\(r) and u(r). The explicit statistics of the fluctuations will the shear component. Rayleigh modes propagate somewhat
be specified more precisely later on. Fluctuations of the ordeplower than bulkS or P waves. As a result they lie on the

of only a few percent shall be treated as first order perturbadght side of the dashed lines. The third antisymmetric Lamb
tions. mode (third black do} lies between the dashed lines. This

mode is evanescent for its compressional component but has
a shear displacement that is close to bulk behavior. It be-
haves like a pure shear mode as we go away from either one
The displacement eigenmodes of a homogeneous elastid the free surfaces. As a result, its total potential energy is
plate have been discussed in great detail by Weg2i&2§. mostly due to shear excitation. Finally, the mode at the very
They can be separated into two subclasses, each of thekadt in Fig. 1 lies on the left of both dashed lines. Even deep
classes consists of an infinite number of branches. Moreovemnside the plate this mode is a mixture Bfand S displace-
due to the symmetry of the boundary conditions of the platements. As we increase the frequency, the number of modes
all subclasses consist of symmetric and antisymmetritncreases but the organization of Lamb modes sketched
branches. The simplest class is the one of shear horizontabove stays essentially intact. One always encounters two
(SH) modes. These waves are pure shear waves with a disurface Rayleigh mode®@ne symmetric and one antisym-
placement field polarization parallel to the boundaries andnetric, modes that are evanescent fnbut not in S and
normal to the direction of propagatid@7,28. The class of modes that are both bulgand bulkP.
Lamb modes consists of a mixture of shear and compres- By translational symmetry, the eigenmodes can be chosen
sional displacements since a pure compressional displacgroportional to transverse plane waves with wave nunkber
ment does not obey the traction-free boundary conditionswe will treat them initially as expk - x)/ A, with a discrete

A. Elastic eigenmodes of a homogeneous plate
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contribution ofk to the labeln as a result of the periodic of the homogeneous plate, defined above. Standard first-
boundary conditions on both sides of a square plate witfrder perturbation theory yields
surfaceA, and eventually take the lima—oo.

o) S, ECE] »
B. Extinction time of the eigenmode¥’, n 0~ w,— ()
We will now assume the presence of disorder in the platey;i
As a result, each eigenmodk, of the homogeneous plate
will achieve a finite lifetimer, .
The first step to formulate a transport theory is to calcu- En(w):% <|<‘I’n|5K|‘1’m>|2>m- (15
m

late the Green’s function averaged over this random disorder
[29]. Let the disorder be represented by a perturbadiénin
the time-evolution operatorK =Kq+ 6K. The ensemble-
averaged “retarded”(outgoing Green’s function at fre-
guencyw is given by

The imaginary part of this parameter is negative, and identi-

fied with — 1/27,,, wherer, is the extinction time of mode.
In general,p(r), A(r), and u(r) are correlated random

variables. The general case is very complex, since not only
1 the fluctuations themselves come in but, by Et0), also

. >E . ) their spatial derivatives. A number of special cases can be

w+i0-K/  0+i0-Ky—X(w) treated exactly, such as the case of fluctuations in density,
(12) with constant elastic coefficienis and . Another simplifi-

This “Dyson” equation defines the mass operakiw). The  cation happens when we consider only fluctuations in the

lowest order contribution is given H0] two Lam'epogfficients)\(lr) and u(r), and k(_eepo constant.
This case is richer physically and far more interesting since it

1 3 still allows a separate control over the extinction and scatter-
M'éK +0O(8K)". 13 ing of S and P waves. If we assume that(r)=pq, A(r)
=No+ ON(r) and w(r)=puo+ou(r), with Ay and uq the
Next, we can insert the complete and orthonormaKdet}  coefficients of the homogeneous layer, we find

<G(Z=w+i0)>=<

E(a))=<5K~

0 [SN(r)/2yNolp 0
1 > 3
K== PLLON(r)/2yN] 0l C(p) L[ m(r)/2\2pmo] | - (16)
0
0Ll [Sp(n)/2\2po]L(p) || 0L}
|
A straightforward calculation, employing integration by (5,u(r)5,u(r’)>=02(2)6(r—r’), (18b)
parts, finally leads to .
(Spu(r)oN(r))= a2y (2)8(r—r"). (180

v, |5K|W,) %) = 2fd3rfd3r’ SN(r) SN (r'
([(nl SK[Wrm) %)= {(OMm)OMr)) Without extra difficulty, we can still allow for a depth depen-

* PN Ty dence of the correlation functions. The present approach can
XV -Up)* (V- U) (V7 Un) " (V- U also be used for the more realistic case of “Rayleigh-Gans”
+6u(r)Su(r'NTrer e Tr(el)* &/, scatterers, in which case the fluctuations are still small, but
with long correlation lengtt31]. 3, can be evaluated for a
+(ON(r)ou(r")) big plate for whichS,,— 3;Afd?k/(27)?, including a sum
(V- Un)* (V- up) Tr(eV* -+ c.c) over the different branches. All factoss cancel if a trans-
n m n m- e verse plane wave normalization eXp(x) is adopted. For
(17) the extinction time of mode branghat frequencyw, we find

To evaluate> ,(w) we must specify the spatial correlations 1
between the Lameoefficients. The simplest choice is to

assume correlations that are short range with respect to the
wavelength,

d?k;
—wZZ niJ'ZW(iki,jkj), (19)

Tj(w) a

with n;(w)=k;(w)/v;(w) in terms of the group velocity;,
5 =dw; /dk;. The “mode scattering cross section” is defined
(ON(r)ON(r"))=05(2)8(r—r1"), (188  gas
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H 2.0
S b b antisym| S| S
W(lkialkj):fo dZ{Ui(Z)W'Uiki|2|V‘Ujkj|2 Lam.sym Lamb antisym syI; mgym
, , . 15 |
+0M(Z)|Tr8i*ki-8jkj| +209,,(2) wt N
L4 .
1.0 e o|—
XRE(V Ul VU Tred &)} (20 0
. . . 0.5 |
We have chosen to split off the factoy, so that this matrix
is symmetric. According to our model the extinction time
irecti i 0.0
does not depend on the direction of the horizontal wave 1.0 Mode index 106.0

numberk; .

The irr]1aginary part of the ensemble-averaged Green’s FIG. 2. Extinction timesr; for the different modes as a result
function is directly related to the excitations of the wavesof elastic scattering, calculated from E49). The extinction times
[32]. The spectral density/{w) per unit surface can be ex- are normalized to the mean free timg of Swaves in a 3D infinite
pressed as random medium. The disorder is chosen to be uniform in the whole

plate and the spatial correlation between the Lamefficients is
chosen equal. The plate thicknessHs=20.2\5, having N=106

1
Mow)=— _ATr ImG(w) modes. The two Rayleigh waves haxe-0.775 . The modes with
™ relatively high -, have a significanP component throughout the
layer.
1 f d%k 127, o Y
™ (27)? [w— wj ]?+ 1/4Ti2k. waves in an infinite medium. They are not sensitive to the

compressional fluctuations in the bulk and therefore live
Due to scattering, all modes are spectrally broadened. Th@nger.
separation in wave number of two adjacent modes with the In the case of dominang fluctuations,o}<o?, (domi-
same frequencysee Fig. 1 is typically of order 1H. The  nant fluctuations in shear velocjtghe Lamb modes with
uncertainty ink is typically 1b;, 7, with v;, the group ve- both “bulk” compressional and “bulk” shear components
locity of the mode. If will achieve a larger extinction time. When thefluctuations
dominate, o{> o, (strong compressional velocity fluctua-
mi>Hlviy, (22) tions), the same Lamb modes with “bulk” compressional
and shear displacements will have an even shorter extinction

one can assume that different modes at fikedb not over-  UMe- _ _ o .
lap, except at a few degeneration points where the dispersion We V_VOUId like to emp_ha3|ze that the I'fet'me of Rayleigh
curves for modes with different symmetij.e., SH and Waves is not well described by our model since they suffer
Lamb) cross. This assumption is thligiasi-two-dimensional most fm!“ surfac_e d|sorde(ﬁluc§uat|9ns In he|ght.wh|ch
approximation(Q2DA). In the Q2DA we find for the spectral W8S not included in Eq<18). This might be done in future
density per unit surfac&/{w)=(27) =;n;, showing that ork.
n;, defined in Eq.(19), represents the spectral weight per
unit surface of modé at frequencyw in phase space. IV. ELASTIC TRANSPORT EQUATION FOR THE PLATE

In the following, all time scales will be normalized to the
mean free time ofS waves in an infinite medium with the
same amount of disorder. This time depends onlyrérthat
can be related to the correlation length and the shear veloci
fluctuations. Figure 2 shows extinction times for different ) .
modes index, calculated from Edq49) and(20), normalized complete_bas{allfn} of the homogeneous plate, giving rise to
to the mean free time dwaves in an infinite medium, The e matrix elementL(w,Q)nymw . The Bethe-Salpeter
plate thickness isH=20.2s, for which N=106 guided €duation[29,32 for this object reads
modes exist. The disorder is chosen uniform in the whole
plate, and the spatial correlations among the Lamoeffi-
cients is taken equabr;=o0%=0%, . SH modes show an
extinction time very similar to the extinction time 8fwaves
in an infinite mediumzZ. On the other hand, the Lamb
modes present a more complex pattern. Rayleigh modes
clearly show a shorter extinction time, Lamb modes with an
evanescent compressional component behave very much like (23
a bulkSwave. Finally, Lamb modes with both bulk compres-
sional and bulk shear components behave in a complicatedith G,, the Dyson Green'’s function defined in E42), and
fashion but tend to have an extinction time larger ttf#&n a new objecU called the irreducible vertex. Upon introduc-

The next task is the formulation of an elastic transport
equation in the quasi-2D approximation. Basic observable is
he ensemble-averaged intensity Green's functi@fw )

G(w*)*), with 0™ =w=*3Q. It can be expressed in the

Lonmm (@,Q)= Gn(w+)Gn'(w_)* { OnmOn’m’

+2 Unniir (@,) Ly (@,€2)
I’
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ing AG,(0,Q)=G (0") =G, (0”) (idem for AX) this
equation can be rearranged into

[Q+(wn_w:r)_AEnn’]Enn’mm’(waQ)

5nm5n’m’+2 Unn'll’
I’

=AGy(w,Q)

X (@0, Q) Ly rmpy (@,0) (24)

This equation is still exact. We will now carry through a

number of approximations relevant to our problem. For small

disorder, the vertex) is given by[30]

Unn/||/(w,Q):<<‘I’n|5K|\I’|><‘I’n/|§K|‘I’|/>>. (25)
For short-range correlations, as specified in Ed$8), the
vertexU can be straightforwardly related to the cross sectio
W(ik;,jk;) defined in Eq.(20). For typical wave packets
(O <w (i.e., a wave packet contains many cyg¢lss that we
can neglect() in any functional dependence on frequency
(“slowly varying envelope approximation)? The indexn
consists of one discrete branch indexand one index that
becomes continuous #—o. The Q2DA neglects all over-
laps between different branches, so thAG(w,Q),,

— 21 6j;, 0l o — wj(K)]. If we letk—k’=q, andS;;,(») the
source in mode representation, a new observable quanity
can be defined as

2 £nn,mm/(w,Q)S,nS:1,EZ775[w—wjk]ﬁjj,>< ij(qu)
mm’

(26)
In space-time the Q2D transport equation reads
v ! L
ﬁt+Vj- +Tkj jk(X,t)
= |Sj(@)[28(t) 800 + w? 2, fdzi
Jk jr 2’77
X WK 7K L (). (27)

We will use this equation as a starting point for our calcula-
tions. The equation is essentially two-dimensional, with a

finite number of mode&f order 2H w/ B) to take care of the

PHYSICAL REVIEW E66, 036601 (2002

Sinceu;, is an eigenfunction for which the energ§) has
been normalized, we see thig,|? has the dimension of
energy. Since Q,q) dependence has been neglected in the
source, it emerges in our transport equation @tas(x) in
space-time.

A. Equipartitioned solution

Equation(27) has one very important property that has
been discussed in great detail in the literature. By recalling
expression(19) for the extinction time, it follows immedi-
ately that the specific intensity with the property that its total
mode energyf d’x ijj(x,t) is independent of the mode in-

dexj and independent of the horizontal direction of propa-
gationk, is a stationary solution fot>0 of the transport
equation. All solutions converge to this solution regardless of
the nature and position of the source. This implies that finally
all modes have an equal share in tiotal energy contents

f the plate. This phenomenon is callesjuipartition
17,33-386, and is believed to be a fundamental feature of
the solution of transport equations at large lapse times, pro-
vided absorption is absent, or at least smaf]. According
to our definition(26), the total spectral energy per unit sur-
face in the regime of equipartition is given by

d?k
(2m)?

Eo(t)=2>,

> |

—consR, n;.
]

f d2X ij(X,t)2’7T§(w_ w]-k)

(29

The equipartitioned solution can be used to evaluate different
energy ratios, such aS/P, or kinetic to potential energy
ratio, as a function of deptflL7]. At z=0 these values agree
with a calculation done by Weaver forseami-infiniterandom
medium [35], and were recently observed with seismic
waves in Mexicd 17].

B. Dynamics of the equipartition process

We will now introduce the spectral energy dendtyx,t)
of modei per unit surface, and its current densityx,t)
according to

2

d“k
Ei(X,t)Ef (2

)

22775(w—wik)Lik(X,t)

third, vertical dimension. The great advantage of this equa-

tion is that the boundary conditions of the elastic waves have

been dealt witrexactly i.e., on the level of the wave equa-
tion, contrary to conventional transport equatip®$,22,33.
We see that j(x, t) can be interpreted as tispecific inten-
sity of the mode [k;) at frequencyw, at horizontal position

X, at a timet after the release of energy by the source. The

source ternt;(w) is given by

Sjk(w):<\l’jk|‘l'f>:wf d3r-f*(r,m) - up(r). (29

o

d<k
:niJ ELiki(th)y (30a
d?k
Ji(xyt)Ef(277)22775((0_wik)ViLik(th)
ok
:nif EviLiki(X’t)' (30b)
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An exact equation of continuity can be found from Eq. 2.0
(27) by integrating ovek; ,

HE(X,1)+ V- Ji(X,1)

15 ¢ 1
d?k ,
= niJE|Ski(u’)| a(x)8(t) g
Slga 10 f 4
—Ej CijEj(x.1), (31) \\\
o . . 05 |
with the “mode-conversion matrix,
&, [d%
Cij=—" o nif > Wiki,jkj). (32) 0.0
T ™ 1.0 Stokes parameter 106.0

The mode-conversion matri€ has an eigenvalue 0 with  £5 3 Eigenvalues #* of the collision matrixC, defined in
eigenvector{n;}, associated with the equipartition. I8 gq (39), for a plate thickneskl = 202\, with 106 modes. They are
—1 nonzero eigenvalues, whose eigenvectors can be calleghmalized to the inverse mean free timeZLbf S waves in an
“Stokes parameters” since they characterize the polarizationhfinite medium. The disorder is uniform in the whole plate and the
of the mode, determine the dynamics of the equipartitionspatial correlation between all Lameefficients is equal. Mode 1 is
process. The solution of E¢31) depends on the initial con- dominated by surface waves and decays rapidly; mode 106 is the
ditions, i.e., how the initial release of energy was distributedequipartitioned mode with infinite lifetime. The flat plateau has
among the different modes, as describedyyfw). modes with dominating shear displacements.

Figure 3 shows all eigenvalues of the maitin the case
of a plate of thicknessi =20.2\ g, for which the number of modes. Figure @) shows an isotropic explosion at a depth
modes isN=106. The disorder has been assumed uniform in\ /3 from the free surface. An explosion is a purely compres-
the whole plate and the spatial correlation among all Lameional source, and does not excite any SH modes. Among the
coefficients is chosen equaiﬁzaizoix. The time scale Lamb modes it excites preferentially the modes that are
has been normalized to the mean free tim&efaves in an  “bulk” for both compressional and shear components as well
infinite medium, with the same amount of disorder, i.e., asas Rayleigh modes. A source at a larger depth will no longer
described by Eq918). directly excite the Rayleigh modes since they have a penetra-

The largest eigenvalu@ssociated with the shortest life- tion length of the order of the wavelength.
time) has an eigenvector made up of the symmetric and an- Figure 4b) applies for a double couple in they plane at
tisymmetric Rayleigh modes. This statement, however, ig deptha /3 from the free surface. Contrary to the isotropic
sensitive to the distribution of the heterogeneity in the plateexplosion, a double couple in they plane strongly excites
If the plate would not have any disorder within a wavelengththe SH modes. Since the source is close to the free surface
from the two free surfaces, the Rayleigh modes would noRayleigh modes are excited as well. The Lamb modes which
suffer much from the disorder, so that their lifetime would are “bulk” for the shear component but only evanescent for
have been very large. When the disorder would have beethe compressional component are also excited.
localized close to the free surface, the Rayleigh modes would Figures 4c) and 4d) show the mode distribution for a
have ended up with a relatively short lifetime. The eigenvecdouble couple in the planez for two different depths of the
tors associated with the flat plateau in Fig. 3 consist ofsource\¢/3 and 5. When the source is located close to
modes whose shear component strongly dominates over thee free surface the majority of the energy is released among
compressional part. As a result, their lifetimes are very simithe Rayleigh modes. Two Rayleigh modes are out of scale in
lar to the shear mean free time of &wave in an infinite  Fig. 4(c) but carry in fact half of the released energy. When
medium. The last set of eigenvectors, with substantiallythe source is situated deep in the plate the pattern becomes
smaller lifetimes than the rest, have a strong compressionakery rich. One can see that the Rayleigh modes are no longer
component. They were already associated with longer lifeexcited.
times in Fig. 2.

For dominanty fluctuations,o?<g?,, the picture does
not change drastically since the Lamb modes are always

dominated by shear. Only for dominant fluctuations, oy Despite the many simplifications that have been carried
>0i, the structure of eigenmodes of the mode-conversiomut, the final transport equatig7) is still difficult to solve
matrix C is modified considerably. Eigenvalues that werenumerically. In future work, we intend to adapt our Monte-
previously associated with “bulkP andSvectors now have Carlo simulations, developed to solve the 3D radiative trans-
their lifetime much shorter. fer equation[16], to this modified equation. In this section

Figure 4 shows, for different kind of sources, how thewe shall carry out a final and rather familiar simplification
initial release of energy is distributed among the differentthat facilitates a numerical solution.

V. DIFFUSION APPROXIMATION
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The diffusion approximation is typically valid at large Combining Egs.(34) and (31) and transforming back to
lapse times, when currents start to become small. In thatpace-time yields the generalized 2D diffusion equation,

case, the specific intensity of modean be written as
1 2 AE (X t)— > Dii(w)AE(X,t)
Lik(QvQ):R Ei(q,Q)+ ?Vi'Ji(an)"'"‘ , (33 I T :
i i
with n;=k; /v; the density of modé in phase space intro- =Si(w)8(X)8(t)— > Cij(w)Ej(x1), (37
duced earlier. In real spacgtransforms into the 2D gradient J
V. Inserting the serie3) into Eq.(27) leads to the relation where

Ji(x,t)= =2 Dy VEj(x). (34) &2k
J smw):nifglsik(w)lz. (38)

This relation is recognized as a generalized Fick’s [[3@],

ghenerallzefd, becde}use |t_|nvoJrvk$ﬁd|fferent mdmdugl m%des & This diffusion equation is an ordinary partial differential

the cost of one dimension. usion matrixis given by equation that can be solved by conventional means. For an
infinite plate no boundary conditions have to be specified:

" 2 2. LV ..
(DY) =2 O @ %W(iki 'ikj)u . (35  the boundary conditions at the two free surfaces have been
vin NyJ 2w viv? taken care of exactly. For this reason, the Q2D diffusion
_ ) ) approximation is not expected to break down near the bound-
It is easy to check the following relation: aries, as was noticed by Turner and Weaver for the conven-
D N tional diffusion approximatioh22].
i/ — (36) Equation(37) still captures the time evolution of the dif-
Dji n; ferent elastic modes of the plate, and can thus be used to
0.10 & 010
Lamb Lamb SH SH Lamb Lamb SH |[SH
sym antisym | sym antisym sym antisym sym |antisym
&
s 8
2 5
k . g S
S A .
£ - S
5 : 5 |
0.00 I R 0.00 /’ ™, K
1.0 Mode index 106.0 1.0 Mode index 106.0
c d
0.10 © 0.10 @
Lamb Lamb SH |SH Lamb Lamb SH |SH
sym antisym sym antisym sym antisym sym | antisym
2 5
5 g
3 B
3 5 :
: g . :
Z Z .. .
- 1 '.‘ ..
o K LY . . o’
. 0 .'.. 3 32 .. .~ Rty R o 0. 4 5l
0.00 ot -, 0.00 il ot .
1.0 Mode index 106.0 1.0 Mode index 106.0

FIG. 4. Initial energy distribution among the different modes, for different sources. The plate thickhRes@®&2\ ; with 106 modes(a)
Isotropic explosion source at a deptly3 from the free surface. No SH waves are excited. The only waves that are excited are the two
surface waves, and the Lamb waves with a nonevanefceninponent(b) Double-couple source in they plane at a depth /3 from the
free surface. In this case all modes are excited with a dominance of SH waves and Lamb waves with an evRresuponhent.(c)
Double-couple source in thez plane at a depth ¢/3 from the free surface. With respect(tn, we infer that the excitation of Lamb waves
with a nonevanescer® is suppressed. The two Rayleigh modes, however, are out of scale and carry half of the releasedd®nergy.
Double-couple source in thez plane as ir(c), now at a depth b from the free surface. The Rayleigh waves are no longer directly excited,

but all other modes are excited.
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study polarization properties. Integrating E§7) over the partition process and finally tends to the equipartitioned dis-
horizontal coordinate gives for the time evolution of the tribution which does not depend on nature and location of
total modal energy the source.

Figure 8b) shows the time evolution of two “observable”
energy ratios measured at the free surface: the ratio of shear
to compressional potential enerds/E,, and the one of the

HEi()=S(0)8(t)— X Cij(w)E;j(1). (39  horizontal to vertical kinetic energid?/V2. After a few
! shear wave mean free times, the energy ratios stabilize at
their predicted equipartition vaIgeE |Ep=7.19, H?/V?
. . . . =1.77[17]. The ratiosE;/E, andH<“/V* increase monotoni-
In fact, this equation fOIIO.WS (;hrectly f“’”_‘ E(q_31) without cally which is due to the C(’))mpressional nature of the source.
the neeq to apply the diffusion approxmanqn. Its formal Figures %c) and 5d) present the equipartition process for
solution isE;(t) =2,;[exp(-Ct) ];;Sj(w) 6(t). This can eas- 4 goyple-couple source deep in the plata {Fom the free
ily be evaluated using the complete set of eigenmodes, of  syrface. For such a source the Rayleigh modes are not ex-
calculated earlier. _ _ cited while the other Lamb modes and SH modes are
Figure 5a) shows the time evolution of the energy among strongly excitedrecall Fig. 4d)]. The initial ratio of shear to
the different modes for an isotropic explosion at a dep83  compressional energy at the free surface is higher than the
from the free surface. The initial modal energy distributionone for the explosion source due to the shear nature of the
was already shown in Fig.(d). For the sake of clarity we source. However, in both cases the energy distributions con-
only display the evolution of three subclasses of modewserge towards an equipartitioned distribution which is inde-
(Rayleigh, Lamb, SHand not the whole distribution. Ray- pendent of the nature of the source and its location. Note that
leigh modes are excited but not SH modes since the source fgr an explosion the equipartition process takes a much
purely compressional. With the passage of time, the modéonger time, typically & . For the double-couple source in
occupation changes as a result of the dynamics of the equiFigs. §c) and gd) it is typically equal tor .

(a) Isotropic Explosion Source (b) Isotropic Explosion Source
1.0 10.0 T T
— E,/E,
2
5 Esy 80 —--—- HNV
2 =]
& T 60} 1
E 05 | B
b [} L 4
g . S 4.0
5 B LR)
= i 20 ]
0.0 : . : : 0.0 . . . .
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
Normalized time Normalized time
(c) Double Couple Source (d) Double Couple Source
1.0 ; 10.0 , :
— EJE,
3 Esu 8.0 L ———— HNV
g o
® ———— T 60f
g os| 5
© 2 40
E [=4
S Evr w
< E\ 20
0.0 : : : : 0.0 . . . .
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 80 100
Normalized time Normalized time

FIG. 5. Dynamics of the energy distribution among the various modes, as predicted by the diffusion e@$tanl for two different
sources. The double arrows in the two figures on the left indicate the total amount of energy contained in either SH waves, Lamb waves, or
Rayleigh waves. Their sum is normalized to 1 at all times. The time scale has been normalized to the mean free tiwa¥édbean an
infinite medium.(a) and(c) are predictions for the evolution of the energy for different modes for an isotropic expl@iaha depth\ ¢/3
and for a double-couple source) in the x-z plane at a depth)s, from the free surfaceb) and(d) are predictions for the ratig/E, of
shear energy to compressional energy and the Hifity? of the kinetic energies associated with elastic displacements in horizontal and
vertical directions. The plate thicknessHs=20.2\; with N=106 modes.
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TABLE I. Ratio D(w)/D*(w) as a function of the number of VI. COHERENT BACKSCATTERING NEAR
modesN(w) in the plate D”(w) is the frequency-dependent diffu- THE FREE SURFACE
sion constant for a 3D infinite mediun (w) is the frequency- . . .
dependent diffusion coefficient for our quasi-2D model Witfw) Coherent backscattering of waves is an interference effect
modes, with the same amount of disorder in batland . Note  that survives multiple scattering. It refers to a coherent en-
thatD =D~ as the number of modes increases. hancement of intensity near the souf88]. The effect has

recently been observed with acoudi®] and elastic waves
N(w) 3 5 13 23 43 65 85 106 [18,41l

We recently investigated coherent backscattering of
D(w) 072 056 072 077 082 081 085 085 scoustic and_ elastic; waved?2,43. Qur analyges SO far have
D*(w) een dqne either with scaléa_coustl() waves in a dlsor_dered
plate with leakaggd42] or with fully elastic waves in an
infinite medium[43]. The last study established that the en-
hancement factor of coherent backscattering is highly depen-

regime, the generalized diffusion equatita¥) further sim- dent on both the nature of the source and on the precise

plifies to a genuine 2D diffusion equation for the total energyparameter that ?S being meg\sured. More specifically, a mea-
density surement of simply(u;(w)?) of waves released by a

“double-couple” source will hardly give rise to a coherent
enhancement, so that observation is unlikely. On the other
HE(X D) ~D(0)AE(X,D)=S(w)8(x)8(1), (400 hand, the measurement @iv u(w)?) of waves released by
an explosion source maps exactly onto the acoustic problem,
with diffusion constant which has the maximal enhancement factor of 2.
Both approaches are unable to model the coherent back-
scattering effect of wave propagation in the crust, whose

It is not very difficult to show that in the equipartition

E Dij(w)nj(w) elastic eigenmodes are not plane waves. In addition, an elas-
D(w)= g (41) tic measurement often takes place at the plate surface. In this
S ni(w) ' section we will investigate coherent backscattering using our
i w

quasi-2D transport model. Recently, de Rostal.[18] and
Weaver et al. [41] reported the studies of coherent back-
scattering of elastic waves at frequencies around 1 MHz.

Our analysis will closely follow the one given in Ref.
[43]. Starting point is the calculation of the vertex

Lo (K k') defined in Eq.(26) and describing the

S(“’)in Si(@). (42) ensemble-averaged, incoherent scattering of the mddles (
+30) and (' ,k—30) into (j,k'+3q) and (' ,k'—3q). By
the reciprocity principle this object must be symmetrical
with respect to left- and right-hand indices. The diffusion
approximation, applied to our Q2DA model yields for large
lapse times,

and source

Equation(41) is recognized as an equipartitioned sum of all
diffusion matrix elements. A similar result was obtained for
the diffusion constant in an infinite elastic medium, in terms
of the individual matrix elements foP and S waves
[20,36,39. Equation(40) has the simple solution,
5”rﬁ(w—wik)éjjrﬁ(w—wjk,)

—iQ+Dg*+ w/Q

Liirjjr (K,K",q) = . (44

Bt = ) p( < ) 43
w,X,1)= expg — )
4mD(w)t 4D (o)t An inverse Fourier transform with respect{provides the

. . ) . time dependence of the envelope of a wave packet with cen-
i.e., the local energy basically variesyt 0 asE(w)~t tral frequencyw. Similarly, the spatial dependence is ob-

X S(w)/D(w) at large times. tained by an inverse Fourier transform ok, andk’. The
Table | shows the evolution of the ratiw)/D”(w) asa  result is

function of the number of modes in the plaig”(w) is the

elastic diffusion constant for an infinite medium, obtained by Liivii(@,t,Xg , Xo— X3, Xg)

Weaver[20] and Ryzhik[23], with the same amount of dis- "

order, i.e., as was described by E@$8). The ratio varies expl — wt/Q)

slowly from 0.72 forN=3 modes to 0.85 foN =106, which =~ %irdj'nin;

was the thickest plate we managed to calculate within rea-

sonable CPU time. Somewhat surprisingly, we infer that the X Jo(Ki - X12)Jo(K; - X34). (45)

diffusion constant doesot seem to converge to the one of

the true 3D problem. Note that our quasi-2D approximationThe depth(i.e., z) dependence can by obtained by summing
must break down when the thickness of the plate exceeds tf@rer theN eigenfunctionsW; - (z) at frequencyw. The co-
mean free path. herent backscattering is due to constructive interference of
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time-reversed waves. It can be constructed straightforwardly (a) Monopolar Source
by interchanging the indices,) and ('x,) [43], 20 —— e .
181 iy
[, R Foo—— z°=m
Cii/jj/(w,t,Xl,X2—>X3,X4) §
exp — wt/Q) 167
:—5ijr5jirninj E
Dt 814l
©
X Jo(Ki - X14)Jo(Kj - X32). (46) s 12|
1 H H * (i 5‘5\ s _A,\b\\ 4 s A /,/’/T \\\ A
Both L and C contribute to (G(i,X;—],Xx2)G*(i’,X3 10 s 50 o o

—]j',X4)), but C survives only close to the source, as we
shall see. To calculate actual enhancement factors, we must

Horizontal distance

specify source and detector. In E@8) the source was al- 2.0 (b) Mlmpowlsom
ready expressed in terms of the eigenmodek)( Different
sources will now be considered. . 18 |
In all cases below we carry out the calculation for a plate §
with thicknessH=20.2\4. This is large enough to avoid a =16 |
direct influence of the boundary of the bottom surface on the g
coherent backscattering near the upper free surfiaee the 814t
interference with the mirror image of the source in the bot- £
tom plang. This calculation should thus mimic the solution Wiz
for any layer that obeyss<H <. As a matter of fact, in the
final profiles, the length$! and ¢ no longer come in. We 190 02 02 06 08 10
thereforeconjecturethat the obtained profiles present the so- Depth z, in units of shear wavelength

lution for elastic coherent backscattering in a semi-infinite

elastic random mediumH>¢), covered by a free surface. FIG. 6. Plot of the coherent backscattering enhancement for a

This is, for instance, also true for the equipartition ratios atmonopolar source at a deqth below the free surface, and directed

the free surface, which were seen to be identical for a thiclalong thez axis. The normal component of the displacement field

guasi-2D layef17] and the semi-infinite laydi35]. u,(0) is measured at the free surface. The plate thickréss
=20.2\, is large enough to avoid a direct influence of the mirror
image of the source in the bottom plane. This calculation should

A. Monopolar source at depth thus mimic the solution for any layéd>\. (a) Plot of the back-
We consider the sourcé(r)~fq(w)d8®)(r—ry), which  Scattering cone for dif‘ferent deptig. (b) Plot of the enhancement
represents a highly directional force field at positiny ~ factor atx=0 as a function of the source depth
small compared to the wavelength. Equati(B) gives

Sik(w) ~ wfp(w)- ujkj(zo) with z, the depth of the source. To exp( — wt/Q)

simplify the analysis we will assume that the force is di- C(x,t)~ Dt fo(w)?

rected along the direction. This configuration was also stud-

ied by de Rosnt al.[18,44] using a thin chaotic 2D silicon 2

cavity, with only three excited Lamb waves. In addition, their X| 2 iU (0)U; (20)* Jo(kix)| . (48)

detection method of heterodyne laser interferometry is only '

sensitive to the normal displacementz=0). In seismol-  As was already mentioned in previous work, the ratio (

ogy, the force field above may be a simple model for a vol-+ C)/L, the so-called “enhancement factor,” is independent

canic eruption. of time at large lapse timgg2]. An application of Cauchy’s
Let x be the horizontal distance between source and deinequality shows thatL(+C)/L<2, with equality if and

tector. The measured “incoherent” background is found fromonly if x=0 and ifu; ,(0)=u; ,(zo) for all modesi. This can

Eq. (45),

L(x,t)~ Dt

exp — wt/Q)

only be true ifzy=0, i.e., the source must be near the sur-
face. In practice, to produce any measurable enhancement
factor, the source must be at a depth less than the typical
wavelength, as shown in Figs(ab and &b). A source with a

force direction different from normal will have a lower en-
X > nilu (02 njlu; Az0)|2 (47 hancement as well. Note that the enhancement is symmetric
i ’ ] ' in azimuth around the source.

which is independent of, but still depends on the dept B. Isotropic explosion

of the source. The “coherent” contribution follows from Egq.  An isotropic explosion at deptl, is described by the
(46), force field f(r,w) =B(w)V8(r—ry) [15]. It can easily be
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shown thatS,(w)=—B(w)w divu,(w). For a fixed fre- (a) Isotropic Explosion Source
quency this depends on the mode labdut, very conve- 2.0 .
niently, not on the directiok of horizontal propagation. T st
Let us first suppose that we measure the normal compo- 5 187
nent of the displacement vector at the surface. Incoherent :6«_:
background and coherent enhancement are given by |5 1.6 ¢
£
o ot/0) 814t
exp— o)
~— 7 2 £
LD Dt B(w) o g |
L /\\\ /\ P
. 1.0 ' . :
X 2 niju; A0)]2X njldivu;(zo)|?, 10 05 00 05 1.0
! J Horizontal distance
(b) Isotropic Explosion Source
exp(— wt/Q) 2.0 : . :
C(x,t)~ F:(—B(w)z —— div(u) measurement
Dt 18| ———- u, measurement
2 § '
x| 2 niu; 0)div ui(Zo)* Io(ki-X)| . (49) =16}
| AN
AN
_ _ _ S1al N
The resulting enhancement factor  C)/L is plotted in s N
dashed lines in Fig.(d) as a function of the horizontal dis- G 40| \\
tance, and in Fig. (b) for a measurement on top of an ex- IR
plosion source as a function of the degf Note that the 10 . . M=
enhancement never reaches its maximum value 2, not even 00 02 04 06 08 10
whenz,=0. In an infinite medium, a measurement of any Depth 2, in units of shear wavelength

component of the displacement vector of waves released by
an explosion source would have had no enhancement at all FIG. 7. Plot of the coherent backscattering enhancement for an
near the sourcf43]. Here, the finite enhancement is due toisotropic explosion source near the free surface. Both the diver-

the nearness of a free surface. gence(solid line) and the normal component of the fieldashed
The enhancement factor can be restored by a measurline) are measureda) Plot of the backscattering conéa) Plot of
ment of the dilatation (diu) in which case, the enhancement factorat0 as a function of the source depth

The enhancement factor only reaches its maximal value of 2 if the
divergence of the field is measured and if the source is close to the

expl— wt/Q) surface.
L(x,t)~ TB(m)2
. : laser interferometry on an elastic plate, and the resulting co-
. . 2 . . 2 )
in ni|div u;(0)] 2 ;| div u;(zo)[* herent backscattering effect was recently studied experimen-
tally by de Rosnyet al. [44].
The spatial derivative in the source finds its way in the
Lexp( — wt/Q) Bessel functiqns_, .in the same way as was dong in earlier
Dbt work for the infinite systen{43]. We derive, again for a
measurement of the displacement vector in the direction nor-

2 mal to the surface,
X | >, nidivui(0)div ui(zo)* Jo(ki-x)| . (50)

C(x,t1)~B(w)

exp—wt/Q) 1 )
A measurement of the dilatation restores the symmetry be- Lxt)~ Dt Ed(‘”)

tween detector and source, and reveals the maximum en-

hancement factor 2 when the detector is located close to the 2 202
source as shown in solid lines in Figgarand 7b). XZ nilu; ,(0)] 2}: n;lu; A(zo)|%k5

C. Dipolar source

We next consider a single couple at the surface with nor- C(x,t)~ exp(—wt/Q)Cosz¢ d(w)?
mal displacement vector, and axis along theaxis. This ' Dt
source can be represented by the dipofér,t) 2
~d(w)zd,6®(r—r,). Such a source can be generated with X| 2 nikiu; 0)U; (o) * Iy (k)| . (5D
|
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Two things can be noted. Firdf, vanishes anywhere above axis of the source and the direction of detection. This
the source X=0). The enhancement is destroyed becausédouble-well” structure was observed by de Rosny, Tourin,
the dipolar nature of the source is in some sense “orthogoand Fink[44].

nal” to the detection of the displacement vector. Maximum  The coherent enhancement factor can be restored by a
enhancement actually occurs a fraction of a wavelength awayodification of the measurement. Suppose we measure the
from the source as shown in dashed line in Figy.8Second, parameterd,u,(r,t). This measurement has the same sym-
the coherent enhancement around the source has?a cosmetry as the dipolar source. We find for background and
struc-ture, with¢ the azimuthal angle between the dipole coherent enhancement,

exp —wt/Q) 1
L6t~ =g 70(@)°2 nikflui0)"2 nkflu; (0%
exp(— wt/ J.(k:x 2
C(x,t)~¥xd(a})2 > nik?u; (0)u; (zo)* %—Jz(kix)cos’xz; . (52)
i i
|
For x=0 andz,=0 we infer thatL=C, i.e., the maximal D. Double-couple source at depth

enhancement can now be reached. The plot of the restored

enhancement factor as the function of the horizontal distance Seismic sources have successfully been modeled as two
and as the function of the source depth are shown in soli@gompensating couple@lipoles [14]. To facilitate observa-
line in Figs. &) and 8b). Note that the line profile is still tion of coherent backscattering with seismic waves we will

not cylindrically symmetric, but depends @h here obtain the enhancement expected for such a source
close to a free surface. In view of the complexity of the
@ Dipolar Source problem, we will restrict ourselves to a seismic plane that is
2.0 ' N s emremen oriented parallel to the free surface where detection takes
— —- u_ measurement place. The depth of this plane is locatedzgt
5 187 1 The force field of a double-couple source is described by
E a symmetric, off-diagonal seismic tensor. We assume that the
£ 167 two dipoles are orthogonal and along the axeendy. The
% 14 force field is then given by
w42t f(r,w)=M(w)(Xdy+yd,) 6(r—ry), (53
0, c; 05 owo 05 \1\0
' Horizontal distance ' with ro=(0,0,2p). We can easily check that the mode repre-
sentation of the sourcé€28) is S y=wM(w)[k; (o)
(b) Dipolar Source +kyU; x(Zo)]. We will assume that the measured parameter
2.0 , , - iS dysUys + dyr Uy, i.€., @ certain horizontal component of the
T %y, measurement stress tensor;x(,y’) are the coordinates in a frame that has
5187 been rotated over an angfe with (x,y) (see Fig. 9. The
:6:9 displacement vector of a modéek) can be expressed as
*é' 16 |
S 14 -
= Ui(2) ={u; (2)z+u; |(2)
G2 N A A
X[cosa;k+sina;zxXk]texplik-x),  (54)
1.0

00 02 04 06 08 1.0
Depth z, in units of shear wavelength which introduces a new angte independent of the direction

FIG. 8. Plot of the coherent backscattering enhancement for ghOf propagation anhd of_des)zth. La(rjnk;_ waves an'e: OI
dipolar source. Bothy,u,(r,t) (solid line) and the normal compo- whereas SH waves have = /2. We defineg as the angle

nentu,(r.t) of the field (dashed lingare measureda) Plot of the ~ betweenk and thex axis, i.e.,k=cos¢x+sin¢y. Finally,
backscattering conéb) Plot of the enhancement factonat 0 asa  the angleu fixes the direction of measurementn the hori-
function of the source depth,. zontal plane with respect to the soursee Fig. 9.

036601-13



NICOLAS P. TRESOURES AND BART A. van TIGGELEN

FIG. 9. The angles involved in the measurement of the back-

scattering cone for a dislocation source at depthSee text for
discussionga;=0 for Lamb waves and;= /2 for SH waves.

The incoherent background is calculated from

Lxt)~ exp(— ctot/Q)

SEEM @S | PHatiy (0)

+ é’y,uik'X/(O)]Zlm Gik(“’)
x; f A3k [ dxUjir (o)

+dyUjer (r0) 1M G (), (55)

whereas the coherent enhancement follows from

expl — wt/Q) ,

C(x,t)= Bt M(w)

X EI fdsk[&x’uik,y’(0)+19y’uik,x’(o)]

2
X[ dyUik,y(To) + dyUik x(ro) IIM Gj(w) | .

(56)

Thesek integrals can be evaluated straightforwardly and w
simply quote the final result,

expl — wt/Q)

L(x,t)~ Dt

%M(w)z

XEi nikizlui,|\(0)|2; nik?lu; (z0)]2. (57)
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Enhancement factor
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\

Enhancement factor

1.2 -

1.0 : e :
00 02 04 06 08

Depth z, in units of shear wavelength

1.0

FIG. 10. Plot of the coherent backscattering enhancement for a
double-couple source with both its axes along the free surface. The
orientation of the detection is such that0 andw=0. (a) Plot of
the backscattering cone for different source depths0, z,
=\//3, andzy= /2. (b) Plot of the enhancement factoret0 as
a function of the source deptf.

N exp — wt/Q) E

C(x,t) Bt 4M(w)2

X

2. nikfu; (0)uy(20)* [cOS3 Jo(kiX)

2

—cosqiJa(kix)]| , (58

with q;=4un+ 38 for Lamb waves andj;=4u+ 38+  for

SH waves. Since th&, term is very small, the line profile is
almost isotropic aroungd=0, independent of. , and maxi-
mal for 3=0. The enhancement factok ¢ C)/L is plotted

in Fig. 10@ as a function of the horizontal distance for
different source depth and in Fig. @) as a function of the
source deptlz, for a measurement on the top of the source.
It is interesting to notice the relatively large second maxi-
mum of the coherent backscattering for a sourcexat
=0.7\s away from the detectorxe=1.2 km).

VIl. CONCLUSIONS AND OUTLOOK

In this paper we have investigated multiple scattering of

Here, u; denotes the complex amplitude of the horizontalelastic modes in a two-dimensional solid plate with a thick-
component of the displacement vector. The coherent part isiess less than the mean free path of the waves. Contrary to
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other approaches, this model facilitates an exact treatment @faves[43]. The nearby presence of(fiee) surface adds an
the boundary conditions at both sides of the plate, i.e., on thadditional complexity, which can only be handled using our
level of the elastic wave equation. At the same time, we camuasi-2D approach. The exact amount of constructive inter-
describe the horizontal transport of waves, as well as thé&rence changes considerably as a function of source depth
intermode mixing, by a radiative transfer equation for elasticand source distance, and is also substantially different for
modes, which can be solved with conventional methods. different sourcegforce, dipole, explosion, double couple

Using this equation, we have investigated different as-The study presented in this paper contributes to the general
pects, such as surface detection, mode extinction times, egnderstanding of coherent backscattering and might be ap-
uipartition, polarized sources at different depths in the plateplied to model future experimenid5,46.
and coherent backscattering. More concretely, we have cal- One potential application of our model concerns the
culated the extinction times of the different modes, and conpropagation and scattering of seismic waves in the Earth’s
cluded that if the fluctuations of the two Laneeefficients  crust in the frequency band 1-10 Hz. The mean free path
are comparable, many modes have a lifetime that is compasf seismic waves is typically estimated to be equal to 50 to
rable to theSwave extinction time in an infinite elastic 3D 100 km, whereas the crust depihis around 30 km. Thus the
random medium. This is explained by the fact that theséasic criterionf >H for the quasi-2D approximation to hold
modes are either pure shg&H) waves, or have an evanes- seems to be met. Our study could predict how fast the dif-
cent P component. Only the surface waves, evanescent iferent guided modes mix up and finally reach equipartition.
both P and S, and Lamb modes with an significaRtcom-  We recently observed equipartition of seismic waves and
ponent throughout the layer, have a longer lifetime. found quantitative agreement with the present mqddl.

We have also considered the symmetric mode-mode col©ne complication is the presence of leaky modes, i.e., modes
lision matrix that determines the dynamics of the intermodalwhose frequency is complex valued. The approach presented
scattering. FON modes it hadN eigenvalues, among which in this paper is not directly adapted to handle them, although
one vanishes by energy conservation. The corresponding &it- should apply to the guided waves in the crust. We can
genvector represents the universal asymptotic mode occupshow that leaky waves can be included in our mdds],
tion of any multiple scattering process with arbitrary source provided that either the leaking is weéle., the leaking time
with the important property of equipartitiqi7,33—36. The  is much greater thahi/v), or that the leaking time is rapid
other eigenvalues, whose order of magnitude equals the exompared to scatteringeaking time is much less thafiv).
tinction rate ofS waves in an infinite 3D random medium, One perspective is to understand the reported values for the
determine the dynamics of the equipartition process. Thiglecay of seismic Coda in terms of the individual quality
depends on the initial excitations of the different modes, i.e.factors of the leaky modd#7]. In future studies we will try
on nature and location of the source, and has been illustratad solve our transfer equation numerically using Monte Carlo
for explosions and “double-couple” sources at different methods.
depths. We have noticed that the energy released by an ex-
plosion takes a much longer time to reach equipartition. ACKNOWLEDGMENTS
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