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Quasi-two-dimensional transfer of elastic waves
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A theory for multiple scattering of elastic waves is presented in a heterogeneous plate bounded by two flat
free surfaces, whose horizontal size is infinite and whose transverse size is smaller than the mean free path of
the waves. We derive a time-dependent, quasi-two-dimensional radiative transfer equation~i.e., two horizontal
dimensions with a finite number of vertical mode! that describes the coupling of the eigenmodes of the layer
~surface Rayleigh waves, shear horizontal waves, and Lamb waves!. The fundamentally different element is
that the traction-free boundary conditions are treated on the level of the wave equation, whereas at the same
time elastic transfer can be considered over macroscopic horizontal distances. Expressions are found that relate
the small-scale fluctuations to the lifetime of the modes and to their mode-coupling rates. We discuss the
diffusion approximation that simplifies the mathematics of this model significantly, and which should apply at
large lapse times. Finally, this model facilitates a study of coherent backscattering near the plate surface for
different sources and for different detection configurations.

DOI: 10.1103/PhysRevE.66.036601 PACS number~s!: 46.40.Cd, 91.30.Dk, 62.30.1d
e

cs
n
se

u
s

x
d

en
s i
p
e

t
r
io

-
ts

y

f t

in

ap
to
lle
u

ny

for
is

ro-
ro-
lly
the

y in
ects
uire
th,

the
of
er-

by

sfer

so-
ack-
ce.
at

the
e

ble-
nc-
ur
is
le-
ose
en
fu-
a

ap-
ra-
es.
I. INTRODUCTION

Multiple scattering of waves in random media has be
studied throughout the previous century@1# and is still an
active domain of research@2,3#. The subject is rich in its
interdisciplinarity aspects, with roots in astrophysics, opti
acoustics, and quantum mechanics, with many fundame
problems, among which wave localization, the random la
speckles, enhanced backscattering@4#, optics of liquid crys-
tals @5,6#, and~broken! time-reversal symmetry@7# are some
contemporary examples. In addition, such studies have fo
potential applications, like in polymer dispersed liquid cry
tals, in remote sensing, in~medical! imaging, and in seismol-
ogy.

A general theory for multiple scattering is very comple
The reason is that it depends heavily on geometry and
mensionality, as well as on the nature of the waves. Differ
studies of multiple scattering consider different geometrie
which the scattering occurs, and for which some sort of s
cific mathematical simplification facilitates a solution. In th
quasi-one-dimensional~quasi-1D! geometry only the lowes
radial diffusion mode of a tube is excited, and is therefo
very useful for rigorous mesoscopic studies of transmiss
fluctuations~see contributions in Ref.@8#!. The ‘‘slab geom-
etry,’’ with ‘‘infinite’’ transverse width is the convenient ge
ometry employed to model optical laboratory experimen
even in complex situations@5#. Media with higher symmetry
are also regularly found. One-dimensional disordered s
tems are popular for their theoretical rigor@9#. Two-
dimensional random media are encountered in studies o
quantum Hall effect, plasmons, bending waves@10#, and mi-
crowaves@11#, or in acoustics@12#. In seismology, a~quasi!
2D picture might apply to the scattering of guided waves
the crust@13#.

The present work introduces the so-called quasi-2D
proximation. We will show that this approximation applies
radiative transfer in a geometry whose vertical size is sma
than the mean free path. It provides a radiative transfer eq
tion for modes, rather than for specific intensities. Ma
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properties of this equation will be addressed in detail
elastic waves. A fundamentally different feature in th
model is that the vertical direction is treated on the mic
scopic level of the wave equations, and not on the mac
scopic level of the transport equations. The latter usua
provide knowledge on scales comparable to and beyond
mean free path@1#. Their compatibility with the underlying
wave equations is therefore regularly questioned, notabl
the so-called mesoscopic regime where interference eff
seem to persist. In addition, several experiments req
knowledge on length scales of the order of the waveleng
particularly in the case of surface detection, where
boundary conditions have to be coped with on the level
the wave equation. This, is for instance, true for the obs
vation of seismic wave propagation in the crust, Refs.@14–
17#, or in the elastic coherent backscattering experiments
de Rosny, Tourin, and Fink@18# in silicon wafers. In ultra-
sonics, the conventional equation of elastic radiative tran
has been studied in great detail@19–22#. The quasi-2D ap-
proximation facilitates a study of many contemporary me
scopic phenomena, such as equipartition and coherent b
scattering, with the explicit consideration of the free surfa

The setup of this paper is as follows. In Sec. II we look
the wave equation for elastic waves, and we will define
Green’s function for elastic wave propagation. In Sec. III w
introduce small-scale fluctuations and define the ensem
averaged Green’s function. This provides us with the exti
tion times of all elastic modes. They will serve to define o
quasi-2D approximation. In Sec. IV, the transport equation
derived, which describes the time evolution of the ensemb
averaged energy contents of all individual modes, and wh
stationary solution exhibits equipartition of energy betwe
all modes. In Sec. V, we discuss the application of the dif
sion approximation to this quasi-2D model, introducing
N3N diffusion tensor forN modes. Finally, in Sec. VI we
investigate coherent backscattering using our quasi-2D
proximation for different source and detection configu
tions. Section VII is devoted to conclusions and perspectiv
©2002 The American Physical Society01-1
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II. A SCHRÖ DINGER-TYPE EQUATION
FOR ELASTIC WAVES

In this section we will formulate the mathematics of ela
tic wave propagation in a way that is suited to apply conv
tional methods in multiple scattering of waves. Many e
ments have already been discussed very thoroughly
Ryzhik et al. @23#, and some will be recalled here for conv
nience@24#. We start with Newton’s second law for the ela
tic displacementu at time t and positionr ,

r~r !] t
2ui5] js i j ~r !1f i~r ,t !. ~1!

Here, r(r ) is the local mass density,f(r , t) is an external
force per unit volume, ands i j (r ) is the stress tensor which
by Hooke’s law, is given by@14,15,25#

s i j ~r !5Ci jkl ~r !«kl~r !5l~r !«kk~r !d i j 12m~r !« i j ~r !,
~2!

with «kl5
1
2 (]kul1] luk) the strain tensor. As always, sum

mation over repeated indices is assumed implicitly. The s
ond equality applies to an isotropic elastic medium, in wh
case the fourth-rank tensorCi jkl can only have two indepen
dent contributions, proportional to the Lame´ moduli l(r )
andm(r ). Inserting the expression~2! of the stress tensor in
Eq. ~1! provides the wave equation for the elastic displa
mentu,

r~r !] t
2ui2@l~r !1m~r !#] i]kuk2m~r !] i] iui

5@] il~r !#~]kuk!12@] jm~r !#« j i 1f i~r ,t !. ~3!

If the Lamécoefficientsl(r ) andm(r ) are independent ofr ,
Eq. ~3! further simplifies to the well-known wave equation

] t
2u2

l12m

r~r !
““•u1

m

r~r !
“3“3u5

f i~r ,t !

r~r !
, ~4!

where the second term of the left-hand side of Eq.~4! corre-
sponds to a compressional bulk wave~also calledP wave!
which propagates with the velocityvp5Al12m/r(r ) and
the third term of the left-hand side of Eq.~4! describes a
shear bulk wave (S wave! with velocity vs5Am/r(r ). For
reasons that will become clear in the following sections,
will not use the form~3! of the elastic wave equation bu
formulate an equivalent equation more suitable for the p
pose of elastic wave scattering and transport.

The total energy of the elastic displacementu is given by
@25#
03660
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Etot5E d3r @ 1
2 r~r !~] tu!21 1

2 l~r !~“•u!21m~r !« i j* « j i #.

~5!

It is customary to split off a termm(curlu)2 ~describing pure
shear wave energy! and 2m(div u)2 ~contributing to com-
pressional energy! from the last term, leaving a rest termI,

Etot5E d3r @ 1
2 r~r !~] tu!21 1

2 ~l~r !

12m~r !!~“•u!21 1
2 m~r !~curlu!21I #. ~6!

This identifies four terms as ‘‘kinetic energy,’’ ‘‘compres
sional energy,’’ ‘‘shear energy,’’ and an interference termI
@17,25,26#. The latter vanishes for plane waves with eith
pure transverse or pure longitudinal polarization. Followi
Ryzhik et al. @23# we shall now introduce the vector field,

C~r ,t !5S Al~r !

2
p•u

Ar~r !

2
i ] tui

2 iAm~r !« i j

D , ~7!

where we have defined the operatorp52 i“. This vector
has 13 components among which only 9 are independ
since« i j is a symmetric tensor whose trace is proportiona
the first component,A(l/2)p•u, of C. The physical interpre-
tation of the vector fieldC is made clear by introducing th
Cartesian scalar product

^C~ t !uC~ t !&[E d3rC~r , t !* •C~r , t !5Etot , ~8!

i.e., the total elastic energy~5!. As a result,C can be re-
garded as acomplex amplitude for elastic energy. The first
and third components ofC correspond to thepotential en-
ergy amplitude while the second component describes
kinetic energy amplitude. Moreover, it can readily b
checked that the wave equation~3! is equivalent to the fol-
lowing Schrödinger-type equation forC @23#:

i ] tuC~r ,t !&5K ~r ,p!•uC~ t !&1uCf~ t !&, ~9!

with the time-evolution operator
K5S 0 Al~r !~p¢ !
1

Ar~r !
0¢¢

1

Ar~r !
p↓Al~r ! 0¢↓ 1

Ar~r !
L¢¢ ~p!↓A2m~r !

0↓↓ A2m~r !L¢ ~p!↓↓ 1

Ar~r !
0¢¢↓↓

D ~10!
1-2
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QUASI-TWO-DIMENSIONAL TRANSFER OF ELASTIC WAVES PHYSICAL REVIEW E66, 036601 ~2002!
and the external force termCf(r ,t)[@0,2f(r ,t)/

Ar(r ),0¢¢#. We have introduced the third rank tensorLi jk(p)
[ 1

2 (pid jk1pjd ik) and used the formal Dirac notation fo
vector fields to facilitate later the more convenient mo
base. The number of arrows determines the order of the
sor. For clarity, we have put horizontal arrows when th
contract in a right-hand side product with a vector. Ifl(r )
and m(r ) are real valued, the matrixK is manifestly sym-
metrical with respect to the ordinary Cartesian scalar prod
~8!.

Equation ~9! can easily be Laplace transformed (Imz
.0). This yields the solution

uC~z!&5@z2K #21@ i uC~ t50!&1uCf~z!&]. ~11!

The operator@z2K #21[G(z) will be called the Green’s
function, and is introduced here for future need. It is con
nient to definet50 just before the source sets in so th
C(t50)50 and the force field becomes the source for wa
propagation.

We would like to point out that the description of elas
waves in terms of the vector fieldC and its time-evolution
equation~9! is mathematically equivalent to the wave equ
tion ~3! even when the mass density and the Lame´ coeffi-
cients depend onr . The formulation~9! is more convenient
to study elastic wave scattering and transport.

III. PROPAGATION OF ELASTIC WAVES IN A LAYER

We consider a heterogeneous elastic plate of infinite h
zontal dimension and of thicknessH. In this paper, we will
assume that both sides of the plate are free surfaces an
therefore neglect any leakage of energy out of the pl
Leaking of energy is an additional complex problem that w
be considered in future work. The present model incor
rates coherent reflection, mode conversions, and, most
portantly, surface Rayleigh waves at the surfaces of the p

The disorder in the plate will be modeled by random flu
tuations of the mass densityr(r ), and the Lame´ coefficients
l(r ) andm(r ). The explicit statistics of the fluctuations wi
be specified more precisely later on. Fluctuations of the or
of only a few percent shall be treated as first order pertur
tions.

A. Elastic eigenmodes of a homogeneous plate

The displacement eigenmodes of a homogeneous el
plate have been discussed in great detail by Weaver@27,28#.
They can be separated into two subclasses, each of t
classes consists of an infinite number of branches. Moreo
due to the symmetry of the boundary conditions of the pla
all subclasses consist of symmetric and antisymme
branches. The simplest class is the one of shear horizo
~SH! modes. These waves are pure shear waves with a
placement field polarization parallel to the boundaries a
normal to the direction of propagation@27,28#. The class of
Lamb modes consists of a mixture of shear and comp
sional displacements since a pure compressional displ
ment does not obey the traction-free boundary conditio
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Figure 1 gives a schematic plot of the dispersion law
Lamb modes. The representation~7! of each mode can be
obtained straightforwardly from its displacement and
shall denote it byCn . The indexn is a discrete index tha
labels, at constant frequency~Fig. 1!, the symmetric and an
tisymmetric Lamb modes and symmetric and antisymme
SH modes in the plate.

Let us discuss the Lamb modes at a given frequency,
dicated by the horizontal line in Fig. 1, in the direction of th
arrow. The two dashed lines indicate purely shear and pu
compressional waves. The first two antisymmetric mod
~first two black dots on the right! are the symmetric and
antisymmetric Rayleigh surface modes, respectively. Th
displacement is evanescent for both the compressional
the shear component. Rayleigh modes propagate some
slower than bulkS or P waves. As a result they lie on th
right side of the dashed lines. The third antisymmetric La
mode ~third black dot! lies between the dashed lines. Th
mode is evanescent for its compressional component but
a shear displacement that is close to bulk behavior. It
haves like a pure shear mode as we go away from either
of the free surfaces. As a result, its total potential energy
mostly due to shear excitation. Finally, the mode at the v
left in Fig. 1 lies on the left of both dashed lines. Even de
inside the plate this mode is a mixture ofP andS displace-
ments. As we increase the frequency, the number of mo
increases but the organization of Lamb modes sketc
above stays essentially intact. One always encounters
surface Rayleigh modes~one symmetric and one antisym
metric!, modes that are evanescent inP but not in S and
modes that are both bulkS and bulkP.

By translational symmetry, the eigenmodes can be cho
proportional to transverse plane waves with wave numbek.
We will treat them initially as exp(ik•x)/AA, with a discrete

FIG. 1. Schematic plot of the dispersion law of the elas
Rayleigh-Lamb eigenmodes in a layer bounded by two free s
faces. Bold lines indicate symmetric branches, straight lines in
cate antisymmetric modes. Only modes of different symmetry
allowed to cross. The two dashed lines indicate the pure shea
pure compressional excitations. The surface Rayleigh waves pr
gate somewhat slower than pureS waves. For an actual calculatio
of the dispersion laws we refer to Fig. 2 of Weaver@27#.
1-3
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NICOLAS P. TRÉGOURÈS AND BART A. van TIGGELEN PHYSICAL REVIEW E66, 036601 ~2002!
contribution ofk to the labeln as a result of the periodic
boundary conditions on both sides of a square plate w
surfaceA, and eventually take the limitA→`.

B. Extinction time of the eigenmodesCn

We will now assume the presence of disorder in the pla
As a result, each eigenmodeCn of the homogeneous plat
will achieve a finite lifetimetn .

The first step to formulate a transport theory is to cal
late the Green’s function averaged over this random diso
@29#. Let the disorder be represented by a perturbationdK in
the time-evolution operator:K5K01dK . The ensemble-
averaged ‘‘retarded’’~outgoing! Green’s function at fre-
quencyv is given by

^G~z5v1 i0!&5 K 1

v1 i02K L [
1

v1 i02K02S~v!
.

~12!

This ‘‘Dyson’’ equation defines the mass operatorS(v). The
lowest order contribution is given by@30#

S~v!5 K dK•

1

v1 i02K0
•dK L 1O~dK !3. ~13!

Next, we can insert the complete and orthonormal set$Cn%
y

s
o
t

03660
h

e.

-
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of the homogeneous plate, defined above. Standard fi
order perturbation theory yields

G~v!5(
n

uCn&^Cnu
v2vn2Sn~v!

, ~14!

with

Sn~v!5(
m

^u^CnudK uCm&u2&
1

v2vm1 i0
. ~15!

The imaginary part of this parameter is negative, and ide
fied with 21/2tn , wheretn is the extinction time of moden.

In general,r(r ), l(r ), and m(r ) are correlated random
variables. The general case is very complex, since not o
the fluctuations themselves come in but, by Eq.~10!, also
their spatial derivatives. A number of special cases can
treated exactly, such as the case of fluctuations in den
with constant elastic coefficientsl andm. Another simplifi-
cation happens when we consider only fluctuations in
two Lamécoefficientsl(r ) andm(r ), and keepr constant.
This case is richer physically and far more interesting sinc
still allows a separate control over the extinction and scat
ing of S and P waves. If we assume thatr(r )5r0 , l(r )
5l01dl(r ) and m(r )5m01dm(r ), with l0 and m0 the
coefficients of the homogeneous layer, we find
dK5
1

Ar0 S 0 @dl~r !/2Al0#p¢ 0¢¢

p↓@dl~r !/2Al0# 0¢↓ L¢¢ ~p!↓@dm~r !/2A2m0#

0↓↓ @dm~r !/2A2m0#L¢ ~p!↓↓ 0¢¢↓↓
D . ~16!
-
can

ns’’
but

d

A straightforward calculation, employing integration b
parts, finally leads to

^u^CnudK uCm&u2&5v2E d3rE d3r 8$^dl~r !dl~r 8!&

3~“•un!* ~“•um!~“8•un8!* ~“8•um8 !

1dm~r !dm~r 8!&Tr «n* •«mTr~«n8!* •«m8

1^dl~r !dm~r 8!&

3~“•un!* ~“•um!Tr~«n8!* •«m8 1c.c.%.

~17!

To evaluateSn(v) we must specify the spatial correlation
between the Lame´ coefficients. The simplest choice is t
assume correlations that are short range with respect to
wavelength,

^dl~r !dl~r 8!&5sl
2~z!d~r2r 8!, ~18a!
he

^dm~r !dm~r 8!&5sm
2 ~z!d~r2r 8!, ~18b!

^dm~r !dl~r 8!&5sml
2 ~z!d~r2r 8!. ~18c!

Without extra difficulty, we can still allow for a depth depen
dence of the correlation functions. The present approach
also be used for the more realistic case of ‘‘Rayleigh-Ga
scatterers, in which case the fluctuations are still small,
with long correlation length@31#. Sn can be evaluated for a
big plate for which(m→( iA*d2k/(2p)2, including a sum
over the different branches. All factorsA cancel if a trans-
verse plane wave normalization exp(ik•x) is adopted. For
the extinction time of mode branchj at frequencyv, we find

1

t j~v!
5v2(

i
niE d2k̂ i

2p
W~ ik i , j k j !, ~19!

with ni(v)[ki(v)/v i(v) in terms of the group velocityvi
5dv i /dk i . The ‘‘mode scattering cross section’’ is define
as
1-4
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QUASI-TWO-DIMENSIONAL TRANSFER OF ELASTIC WAVES PHYSICAL REVIEW E66, 036601 ~2002!
W~ ik i , j k j !5E
0

H

dz$sl
2~z!u“•uiki

u2u“•uj k j
u2

1sm
2 ~z!uTr « iki

* •« j k j
u212sml

2 ~z!

3Re~“•uiki
* •“•uj k j

Tr « iki
* •« j k j

!%. ~20!

We have chosen to split off the factorni , so that this matrix
is symmetric. According to our model the extinction timet j
does not depend on the direction of the horizontal wa
numberk j .

The imaginary part of the ensemble-averaged Gree
function is directly related to the excitations of the wav
@32#. The spectral densityN(v) per unit surface can be ex
pressed as

N~v!52
1

pA
Tr Im G~v!

5
1

p (
i
E d2k

~2p!2

1/2t ik

@v2v ik#211/4t ik
2

. ~21!

Due to scattering, all modes are spectrally broadened.
separation in wave number of two adjacent modes with
same frequency~see Fig. 1! is typically of order 1/H. The
uncertainty ink is typically 1/v ikt ik , with v ik the group ve-
locity of the mode. If

t ik.H/v ik , ~22!

one can assume that different modes at fixedk do not over-
lap, except at a few degeneration points where the disper
curves for modes with different symmetry~i.e., SH and
Lamb! cross. This assumption is thequasi-two-dimensiona
approximation~Q2DA!. In the Q2DA we find for the spectra
density per unit surfaceN(v)5(2p)21( ini , showing that
ni , defined in Eq.~19!, represents the spectral weight p
unit surface of modei at frequencyv in phase space.

In the following, all time scales will be normalized to th
mean free time ofS waves in an infinite medium with the
same amount of disorder. This time depends only onsm

2 that
can be related to the correlation length and the shear velo
fluctuations. Figure 2 shows extinction times for differe
modes index, calculated from Eqs.~19! and~20!, normalized
to the mean free time ofSwaves in an infinite medium. The
plate thickness isH520.2lS , for which N5106 guided
modes exist. The disorder is chosen uniform in the wh
plate, and the spatial correlations among the Lame´ coeffi-
cients is taken equal:sl

25sm
2 5sml

2 . SH modes show an
extinction time very similar to the extinction time ofSwaves
in an infinite mediumts

` . On the other hand, the Lam
modes present a more complex pattern. Rayleigh mo
clearly show a shorter extinction time, Lamb modes with
evanescent compressional component behave very much
a bulkSwave. Finally, Lamb modes with both bulk compre
sional and bulk shear components behave in a complic
fashion but tend to have an extinction time larger thanS
03660
e
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t

e

es
n
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ed

waves in an infinite medium. They are not sensitive to
compressional fluctuations in the bulk and therefore l
longer.

In the case of dominantm fluctuations,sl
2!sm

2 ~domi-
nant fluctuations in shear velocity! the Lamb modes with
both ‘‘bulk’’ compressional and ‘‘bulk’’ shear component
will achieve a larger extinction time. When thel fluctuations
dominate,sl

2@sm
2 ~strong compressional velocity fluctua

tions!, the same Lamb modes with ‘‘bulk’’ compression
and shear displacements will have an even shorter extinc
time.

We would like to emphasize that the lifetime of Rayleig
waves is not well described by our model since they su
most from surface disorder~fluctuations in height!, which
was not included in Eqs.~18!. This might be done in future
work.

IV. ELASTIC TRANSPORT EQUATION FOR THE PLATE

The next task is the formulation of an elastic transp
equation in the quasi-2D approximation. Basic observabl
the ensemble-averaged intensity Green’s function^G(v2)
3G(v1)* &, with v65v6 1

2 V. It can be expressed in th
complete base$Cn% of the homogeneous plate, giving rise
the matrix elementL(v,V)nn8mm8 . The Bethe-Salpete
equation@29,32# for this object reads

Lnn8mm8~v,V!5Gn~v1!Gn8~v2!* Fdnmdn8m8

1(
l l 8

Unn8 l l 8~v,V!Ll l 8mm8~v,V!G ,

~23!

with Gn the Dyson Green’s function defined in Eq.~12!, and
a new objectU called the irreducible vertex. Upon introduc

FIG. 2. Extinction timest i for the different modesi as a result
of elastic scattering, calculated from Eq.~19!. The extinction times
are normalized to the mean free timetS

` of Swaves in a 3D infinite
random medium. The disorder is chosen to be uniform in the wh
plate and the spatial correlation between the Lame´ coefficients is
chosen equal. The plate thickness isH520.2ls , having N5106
modes. The two Rayleigh waves havet i'0.7tS

` . The modes with
relatively high t i have a significantP component throughout the
layer.
1-5
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NICOLAS P. TRÉGOURÈS AND BART A. van TIGGELEN PHYSICAL REVIEW E66, 036601 ~2002!
ing DGnn8(v,V)[Gn(v1)2Gn8
* (v2) ~idem for DS) this

equation can be rearranged into

@V1~vn2vn8
* !2DSnn8#Lnn8mm8~v,V!

5DGnn8~v,V!Fdnmdn8m81(
l l 8

Unn8 l l 8

3~v,V!Ll l 8mm8~v,V!G . ~24!

This equation is still exact. We will now carry through
number of approximations relevant to our problem. For sm
disorder, the vertexU is given by@30#

Unn8 l l 8~v,V!5Š^CnudK uCl&^Cn8udK uCl 8&‹. ~25!

For short-range correlations, as specified in Eqs.~18!, the
vertexU can be straightforwardly related to the cross sect
W( ik i , j k j ) defined in Eq.~20!. For typical wave packets
V!v ~i.e., a wave packet contains many cycles! so that we
can neglectV in any functional dependence on frequen
~‘‘slowly varying envelope approximation’’!. The index n
consists of one discrete branch indexj, and one indexk that
becomes continuous asA→`. The Q2DA neglects all over
laps between different branches, so thatDG(v,V)nn8→2p id j j 8d@v2v j (k)#. If we let k2k85q, andSm(v) the
source in mode representation, a new observable quantityL j k
can be defined as

(
mm8

Lnn8mm8~v,V!SmSm8
* [2pd@v2v j k#d j j 83L j k~q,V!.

~26!

In space-time the Q2D transport equation reads

F ] t1vj•“1
1

t j k j
GL j k~x,t !

5uSj k~v!u2d~ t !d~x!1v2(
j 8

E d2k̂ j 8
2p

3nj 8W~ j k j , j 8k j 8!L j 8k j 8
~x,t !. ~27!

We will use this equation as a starting point for our calcu
tions. The equation is essentially two-dimensional, with
finite number of modes~of order 2Hv/b) to take care of the
third, vertical dimension. The great advantage of this eq
tion is that the boundary conditions of the elastic waves h
been dealt withexactly, i.e., on the level of the wave equa
tion, contrary to conventional transport equations@21,22,33#.
We see thatL j k(x, t) can be interpreted as thespecific inten-
sity of the mode (j k j ) at frequencyv, at horizontal position
x, at a timet after the release of energy by the source. T
source termSj k(v) is given by

Sj k~v!5^Cj kuCf&5vE d3r•f* ~r ,v!•uj k~r !. ~28!
03660
ll

n

-
a

-
e

e

Sinceuj k is an eigenfunction for which the energy~5! has
been normalized, we see thatuSj ku2 has the dimension o
energy. Since (V,q) dependence has been neglected in
source, it emerges in our transport equation as ad(t)d(x) in
space-time.

A. Equipartitioned solution

Equation~27! has one very important property that h
been discussed in great detail in the literature. By recall
expression~19! for the extinction time, it follows immedi-
ately that the specific intensity with the property that its to
mode energy*d2x L j k j

(x,t) is independent of the mode in
dex j and independent of the horizontal direction of prop
gation k, is a stationary solution fort.0 of the transport
equation. All solutions converge to this solution regardless
the nature and position of the source. This implies that fina
all modes have an equal share in thetotal energy contents
of the plate. This phenomenon is calledequipartition
@17,33–36#, and is believed to be a fundamental feature
the solution of transport equations at large lapse times, p
vided absorption is absent, or at least small@37#. According
to our definition~26!, the total spectral energy per unit su
face in the regime of equipartition is given by

Ev~ t !5(
j
E d2k

~2p!2E d2x L j k~x,t !2pd~v2v j k!

→const(
j

nj . ~29!

The equipartitioned solution can be used to evaluate diffe
energy ratios, such asS/P, or kinetic to potential energy
ratio, as a function of depth@17#. At z50 these values agre
with a calculation done by Weaver for asemi-infiniterandom
medium @35#, and were recently observed with seism
waves in Mexico@17#.

B. Dynamics of the equipartition process

We will now introduce the spectral energy densityEi(x,t)
of mode i per unit surface, and its current densityJi(x,t)
according to

Ei~x,t ![E d2k

~2p!2
2pd~v2v ik!Lik~x,t !

5niE d2k̂

2p
Liki

~x,t !, ~30a!

Ji~x,t ![E d2k

~2p!2
2pd~v2v ik!viL ik~x,t !

5niE d2k̂

2p
viL iki

~x,t !. ~30b!
1-6
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QUASI-TWO-DIMENSIONAL TRANSFER OF ELASTIC WAVES PHYSICAL REVIEW E66, 036601 ~2002!
An exact equation of continuity can be found from E
~27! by integrating overk i ,

] tEi~x,t !1“•Ji~x,t !

5FniE d2k̂

2p
uSiki

~v!u2Gd~x!d~ t !

2(
j

Ci j Ej~x,t !, ~31!

with the ‘‘mode-conversion matrix,’’

Ci j 5
d i j

t i
2v2niE d2k̂ j

2p
W~ ik i , j k j !. ~32!

The mode-conversion matrixC has an eigenvalue 0 with
eigenvector$ni%, associated with the equipartition. ItsN
21 nonzero eigenvalues, whose eigenvectors can be c
‘‘Stokes parameters’’ since they characterize the polariza
of the mode, determine the dynamics of the equipartit
process. The solution of Eq.~31! depends on the initial con
ditions, i.e., how the initial release of energy was distribu
among the different modes, as described bySik(v).

Figure 3 shows all eigenvalues of the matrixC in the case
of a plate of thicknessH520.2lS , for which the number of
modes isN5106. The disorder has been assumed uniform
the whole plate and the spatial correlation among all La´
coefficients is chosen equal:sl

25sm
2 5sml

2 . The time scale
has been normalized to the mean free time ofS waves in an
infinite medium, with the same amount of disorder, i.e.,
described by Eqs.~18!.

The largest eigenvalue~associated with the shortest life
time! has an eigenvector made up of the symmetric and
tisymmetric Rayleigh modes. This statement, however
sensitive to the distribution of the heterogeneity in the pla
If the plate would not have any disorder within a waveleng
from the two free surfaces, the Rayleigh modes would
suffer much from the disorder, so that their lifetime wou
have been very large. When the disorder would have b
localized close to the free surface, the Rayleigh modes wo
have ended up with a relatively short lifetime. The eigenv
tors associated with the flat plateau in Fig. 3 consist
modes whose shear component strongly dominates ove
compressional part. As a result, their lifetimes are very si
lar to the shear mean free time of anS wave in an infinite
medium. The last set of eigenvectors, with substantia
smaller lifetimes than the rest, have a strong compressi
component. They were already associated with longer l
times in Fig. 2.

For dominantm fluctuations,sl
2!sm

2 , the picture does
not change drastically since the Lamb modes are alw
dominated by shear. Only for dominantl fluctuations,sl

2

@sm
2 , the structure of eigenmodes of the mode-convers

matrix C is modified considerably. Eigenvalues that we
previously associated with ‘‘bulk’’P andSvectors now have
their lifetime much shorter.

Figure 4 shows, for different kind of sources, how t
initial release of energy is distributed among the differe
03660
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modes. Figure 4~a! shows an isotropic explosion at a dep
ls/3 from the free surface. An explosion is a purely compr
sional source, and does not excite any SH modes. Among
Lamb modes it excites preferentially the modes that
‘‘bulk’’ for both compressional and shear components as w
as Rayleigh modes. A source at a larger depth will no lon
directly excite the Rayleigh modes since they have a pene
tion length of the order of the wavelength.

Figure 4~b! applies for a double couple in thex-y plane at
a depthls/3 from the free surface. Contrary to the isotrop
explosion, a double couple in thex-y plane strongly excites
the SH modes. Since the source is close to the free sur
Rayleigh modes are excited as well. The Lamb modes wh
are ‘‘bulk’’ for the shear component but only evanescent
the compressional component are also excited.

Figures 4~c! and 4~d! show the mode distribution for a
double couple in the planex-z for two different depths of the
source,ls/3 and 5ls . When the source is located close
the free surface the majority of the energy is released am
the Rayleigh modes. Two Rayleigh modes are out of scal
Fig. 4~c! but carry in fact half of the released energy. Wh
the source is situated deep in the plate the pattern beco
very rich. One can see that the Rayleigh modes are no lon
excited.

V. DIFFUSION APPROXIMATION

Despite the many simplifications that have been carr
out, the final transport equation~27! is still difficult to solve
numerically. In future work, we intend to adapt our Mont
Carlo simulations, developed to solve the 3D radiative tra
fer equation@16#, to this modified equation. In this sectio
we shall carry out a final and rather familiar simplificatio
that facilitates a numerical solution.

FIG. 3. Eigenvalues 1/t** of the collision matrixC, defined in
Eq. ~32!, for a plate thicknessH520.2ls with 106 modes. They are
normalized to the inverse mean free time 1/tS

` of S waves in an
infinite medium. The disorder is uniform in the whole plate and t
spatial correlation between all Lame´ coefficients is equal. Mode 1 is
dominated by surface waves and decays rapidly; mode 106 is
equipartitioned mode with infinite lifetime. The flat plateau h
modes with dominating shear displacements.
1-7
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NICOLAS P. TRÉGOURÈS AND BART A. van TIGGELEN PHYSICAL REVIEW E66, 036601 ~2002!
The diffusion approximation is typically valid at larg
lapse times, when currents start to become small. In
case, the specific intensity of modei can be written as

Lik~q,V!5
1

ni
FEi~q,V!1

2

v i
2 vi•Ji~q,V!1•••G , ~33!

with ni5ki /v i the density of modei in phase space intro
duced earlier. In real spaceq transforms into the 2D gradien
“. Inserting the series~33! into Eq.~27! leads to the relation

Ji~x,t !52(
j

Di j“Ej~x,t !. ~34!

This relation is recognized as a generalized Fick’s Law@38#,
generalized, because it involves different individual mode
the cost of one dimension. Thediffusion matrixis given by

~D21! i j 52S d i j

v i
2t i

2
v2

nj
E d2k̂ j

2p
W~ ik i ,ik j !

vi•vj

v i
2v j

2D . ~35!

It is easy to check the following relation:

Di j

D ji
5

ni

nj
. ~36!
03660
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Combining Eqs.~34! and ~31! and transforming back to
space-time yields the generalized 2D diffusion equation,

] tEi~x,t !2(
j

Di j ~v!nEj~x,t !

5Si~v!d~x!d~ t !2(
j

Ci j ~v!Ej~x,t !, ~37!

where

Si~v!5niE d2k̂

2p
uSik~v!u2. ~38!

This diffusion equation is an ordinary partial differenti
equation that can be solved by conventional means. Fo
infinite plate no boundary conditions have to be specifi
the boundary conditions at the two free surfaces have b
taken care of exactly. For this reason, the Q2D diffus
approximation is not expected to break down near the bou
aries, as was noticed by Turner and Weaver for the conv
tional diffusion approximation@22#.

Equation~37! still captures the time evolution of the dif
ferent elastic modes of the plate, and can thus be use
e two

s
ergy.
ited,
FIG. 4. Initial energy distribution among the different modes, for different sources. The plate thickness isH520.2ls with 106 modes.~a!
Isotropic explosion source at a depthls/3 from the free surface. No SH waves are excited. The only waves that are excited are th
surface waves, and the Lamb waves with a nonevanescentP component.~b! Double-couple source in thex-y plane at a depthls/3 from the
free surface. In this case all modes are excited with a dominance of SH waves and Lamb waves with an evanescentP component.~c!
Double-couple source in thex-z plane at a depthls/3 from the free surface. With respect to~b!, we infer that the excitation of Lamb wave
with a nonevanescentP is suppressed. The two Rayleigh modes, however, are out of scale and carry half of the released en~d!
Double-couple source in thex-z plane as in~c!, now at a depth 5ls from the free surface. The Rayleigh waves are no longer directly exc
but all other modes are excited.
1-8
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QUASI-TWO-DIMENSIONAL TRANSFER OF ELASTIC WAVES PHYSICAL REVIEW E66, 036601 ~2002!
study polarization properties. Integrating Eq.~37! over the
horizontal coordinater gives for the time evolution of the
total modal energy

] tEi~ t !5Si~v!d~ t !2(
j

Ci j ~v!Ej~ t !. ~39!

In fact, this equation follows directly from Eq.~31! without
the need to apply the diffusion approximation. Its form
solution isEi(t)5( j@exp(2Ct)# i j Sj (v)u(t). This can eas-
ily be evaluated using the complete set of eigenmodes oC,
calculated earlier.

Figure 5~a! shows the time evolution of the energy amo
the different modes for an isotropic explosion at a depthls/3
from the free surface. The initial modal energy distributi
was already shown in Fig. 4~a!. For the sake of clarity we
only display the evolution of three subclasses of mo
~Rayleigh, Lamb, SH! and not the whole distribution. Ray
leigh modes are excited but not SH modes since the sour
purely compressional. With the passage of time, the m
occupation changes as a result of the dynamics of the e
03660
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partition process and finally tends to the equipartitioned d
tribution which does not depend on nature and location
the source.

Figure 5~b! shows the time evolution of two ‘‘observable
energy ratios measured at the free surface: the ratio of s
to compressional potential energy,Es /Ep , and the one of the
horizontal to vertical kinetic energyH2/V2. After a few
shear wave mean free times, the energy ratios stabiliz
their predicted equipartition valueEs /EP57.19, H2/V2

51.77@17#. The ratiosEs /Ep andH2/V2 increase monotoni-
cally which is due to the compressional nature of the sou

Figures 5~c! and 5~d! present the equipartition process f
a double-couple source deep in the plate (5ls from the free
surface!. For such a source the Rayleigh modes are not
cited while the other Lamb modes and SH modes
strongly excited@recall Fig. 4~d!#. The initial ratio of shear to
compressional energy at the free surface is higher than
one for the explosion source due to the shear nature of
source. However, in both cases the energy distributions c
verge towards an equipartitioned distribution which is ind
pendent of the nature of the source and its location. Note
for an explosion the equipartition process takes a m
longer time, typically 6ts

` . For the double-couple source i
Figs. 5~c! and 5~d! it is typically equal tots

` .
waves, or

l and
FIG. 5. Dynamics of the energy distribution among the various modes, as predicted by the diffusion equation~39! and for two different
sources. The double arrows in the two figures on the left indicate the total amount of energy contained in either SH waves, Lamb
Rayleigh waves. Their sum is normalized to 1 at all times. The time scale has been normalized to the mean free time of theS waves in an
infinite medium.~a! and~c! are predictions for the evolution of the energy for different modes for an isotropic explosion~a! at a depthls/3
and for a double-couple source~c! in the x-z plane at a depth 5ls from the free surface.~b! and ~d! are predictions for the ratioEs /Ep of
shear energy to compressional energy and the ratioH2/V2 of the kinetic energies associated with elastic displacements in horizonta
vertical directions. The plate thickness isH520.2ls with N5106 modes.
1-9
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NICOLAS P. TRÉGOURÈS AND BART A. van TIGGELEN PHYSICAL REVIEW E66, 036601 ~2002!
It is not very difficult to show that in the equipartitio
regime, the generalized diffusion equation~37! further sim-
plifies to a genuine 2D diffusion equation for the total ener
density,

] tE~x,t !2D~v!DE~x,t !5S~v!d~x!d~ t !, ~40!

with diffusion constant

D~v!5

(
i j

Di j ~v!nj~v!

(
j

nj~v!

, ~41!

and source

S~v!5(
i

Si~v!. ~42!

Equation~41! is recognized as an equipartitioned sum of
diffusion matrix elements. A similar result was obtained f
the diffusion constant in an infinite elastic medium, in term
of the individual matrix elements forP and S waves
@20,36,39#. Equation~40! has the simple solution,

E~v,x,t !5
S~v!

4pD~v!t
expS 2

x2

4D~v!t D , ~43!

i.e., the local energy basically varies atx50 as E(v);t21

3S(v)/D(v) at large times.
Table I shows the evolution of the ratioD(v)/D`(v) as a

function of the number of modes in the plate.D`(v) is the
elastic diffusion constant for an infinite medium, obtained
Weaver@20# and Ryzhik@23#, with the same amount of dis
order, i.e., as was described by Eqs.~18!. The ratio varies
slowly from 0.72 forN53 modes to 0.85 forN5106, which
was the thickest plate we managed to calculate within r
sonable CPU time. Somewhat surprisingly, we infer that
diffusion constant doesnot seem to converge to the one
the true 3D problem. Note that our quasi-2D approximat
must break down when the thickness of the plate exceeds
mean free path.

TABLE I. Ratio D(v)/D`(v) as a function of the number o
modesN(v) in the plate.D`(v) is the frequency-dependent diffu
sion constant for a 3D infinite medium,D(v) is the frequency-
dependent diffusion coefficient for our quasi-2D model withN(v)
modes, with the same amount of disorder in bothl and m. Note
that DÞD` as the number of modes increases.

N(v) 3 5 13 23 43 65 85 106

D~v!

D`~v!
0.72 0.56 0.72 0.77 0.82 0.84 0.85 0.8
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VI. COHERENT BACKSCATTERING NEAR
THE FREE SURFACE

Coherent backscattering of waves is an interference ef
that survives multiple scattering. It refers to a coherent
hancement of intensity near the source@39#. The effect has
recently been observed with acoustic@40# and elastic waves
@18,41#.

We recently investigated coherent backscattering
acoustic and elastic waves@42,43#. Our analyses so far hav
been done either with scalar~acoustic! waves in a disordered
plate with leakage@42# or with fully elastic waves in an
infinite medium@43#. The last study established that the e
hancement factor of coherent backscattering is highly dep
dent on both the nature of the source and on the pre
parameter that is being measured. More specifically, a m
surement of simply^ui(v)2& of waves released by a
‘‘double-couple’’ source will hardly give rise to a cohere
enhancement, so that observation is unlikely. On the o
hand, the measurement of^div u(v)2& of waves released by
an explosion source maps exactly onto the acoustic prob
which has the maximal enhancement factor of 2.

Both approaches are unable to model the coherent b
scattering effect of wave propagation in the crust, who
elastic eigenmodes are not plane waves. In addition, an e
tic measurement often takes place at the plate surface. In
section we will investigate coherent backscattering using
quasi-2D transport model. Recently, de Rosnyet al. @18# and
Weaver et al. @41# reported the studies of coherent bac
scattering of elastic waves at frequencies around 1 MHz

Our analysis will closely follow the one given in Re
@43#. Starting point is the calculation of the verte
Lnn8mm8(k,k8,q) defined in Eq. ~26! and describing the
ensemble-averaged, incoherent scattering of the modesi ,k
1 1

2 q) and (i 8,k2 1
2 q) into ( j ,k81 1

2 q) and (j 8,k82 1
2 q). By

the reciprocity principle this object must be symmetric
with respect to left- and right-hand indices. The diffusio
approximation, applied to our Q2DA model yields for larg
lapse times,

Lii 8 j j 8~k,k8,q!5
d i i 8d~v2v ik!d j j 8d~v2v j k8!

2 iV1Dq21v/Q
. ~44!

An inverse Fourier transform with respect toV provides the
time dependence of the envelope of a wave packet with c
tral frequencyv. Similarly, the spatial dependence is o
tained by an inverse Fourier transform overq, k, andk8. The
result is

Lii 8 j j 8~v,t,x1 ,x2→x3 ,x4!

5
exp~2vt/Q!

Dt
d i i 8d j j 8ninj

3J0~ki•x12!J0~kj•x34!. ~45!

The depth~i.e., z) dependence can by obtained by summi
over theN eigenfunctionsCi•(z) at frequencyv. The co-
herent backscattering is due to constructive interference
1-10
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QUASI-TWO-DIMENSIONAL TRANSFER OF ELASTIC WAVES PHYSICAL REVIEW E66, 036601 ~2002!
time-reversed waves. It can be constructed straightforwa
by interchanging the indices (i 8x2) and (j 8x4) @43#,

Cii 8 j j 8~v,t,x1 ,x2→x3 ,x4!

5
exp~2vt/Q!

Dt
d i j 8d j i 8ninj

3J0~ki•x14!J0~kj•x32!. ~46!

Both L and C contribute to ^G( i ,x1→ j ,x2)G* ( i 8,x3
→ j 8,x4)&, but C survives only close to the source, as w
shall see. To calculate actual enhancement factors, we
specify source and detector. In Eq.~28! the source was al
ready expressed in terms of the eigenmodes (j ,k). Different
sources will now be considered.

In all cases below we carry out the calculation for a pl
with thicknessH520.2ls . This is large enough to avoid
direct influence of the boundary of the bottom surface on
coherent backscattering near the upper free surface~i.e., the
interference with the mirror image of the source in the b
tom plane!. This calculation should thus mimic the solutio
for any layer that obeyslS!H,,. As a matter of fact, in the
final profiles, the lengthsH and , no longer come in. We
thereforeconjecturethat the obtained profiles present the s
lution for elastic coherent backscattering in a semi-infin
elastic random medium (H@,), covered by a free surface
This is, for instance, also true for the equipartition ratios
the free surface, which were seen to be identical for a th
quasi-2D layer@17# and the semi-infinite layer@35#.

A. Monopolar source at depth

We consider the sourcef(r );f0(v)d (3)(r2r0), which
represents a highly directional force field at positionr0,
small compared to the wavelength. Equation~28! gives
Sj k(v);vf0(v)•uj k j

(z0) with z0 the depth of the source. T
simplify the analysis we will assume that the force is
rected along thez direction. This configuration was also stu
ied by de Rosnyet al. @18,44# using a thin chaotic 2D silicon
cavity, with only three excited Lamb waves. In addition, th
detection method of heterodyne laser interferometry is o
sensitive to the normal displacementuz(z50). In seismol-
ogy, the force field above may be a simple model for a v
canic eruption.

Let x be the horizontal distance between source and
tector. The measured ‘‘incoherent’’ background is found fro
Eq. ~45!,

L~x,t !;
exp~2vt/Q!

Dt
f 0~v!2

3(
i

ni uui ,z~0!u2(
j

nj uuj ,z~z0!u2, ~47!

which is independent ofx, but still depends on the depthz0
of the source. The ‘‘coherent’’ contribution follows from Eq
~46!,
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C~x,t !;
exp~2vt/Q!

Dt
f 0~v!2

3U(
i

niui ,z~0!ui ,z~z0!* J0~kix!U2

. ~48!

As was already mentioned in previous work, the ratioL
1C)/L, the so-called ‘‘enhancement factor,’’ is independe
of time at large lapse times@42#. An application of Cauchy’s
inequality shows that (L1C)/L<2, with equality if and
only if x50 and ifui ,z(0)5ui ,z(z0) for all modesi. This can
only be true ifz050, i.e., the source must be near the s
face. In practice, to produce any measurable enhancem
factor, the source must be at a depth less than the typ
wavelength, as shown in Figs. 6~a! and 6~b!. A source with a
force direction different from normal will have a lower en
hancement as well. Note that the enhancement is symm
in azimuth around the source.

B. Isotropic explosion

An isotropic explosion at depthz0 is described by the
force field f(r ,v)5B(v)“d(r2r0) @15#. It can easily be

FIG. 6. Plot of the coherent backscattering enhancement f
monopolar source at a depthz0 below the free surface, and directe
along thez axis. The normal component of the displacement fie
uz(0) is measured at the free surface. The plate thicknessH
520.2ls is large enough to avoid a direct influence of the mirr
image of the source in the bottom plane. This calculation sho
thus mimic the solution for any layerH@l. ~a! Plot of the back-
scattering cone for different depthsz0. ~b! Plot of the enhancemen
factor atx50 as a function of the source depthz0.
1-11
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NICOLAS P. TRÉGOURÈS AND BART A. van TIGGELEN PHYSICAL REVIEW E66, 036601 ~2002!
shown thatSik(v)52B(v)v div uik(v). For a fixed fre-
quency this depends on the mode labeli but, very conve-
niently, not on the directionk̂ of horizontal propagation.

Let us first suppose that we measure the normal com
nent of the displacement vector at the surface. Incohe
background and coherent enhancement are given by

L~x,t !;
exp~2vt/Q!

Dt
B~v!2

3(
i

ni uui ,z~0!u2(
j

nj udiv uj~z0!u2,

C~x,t !;
exp~2vt/Q!

Dt
B~v!2

3U(
i

niui ,z~0!div ui~z0!* J0~ki•x!U2

. ~49!

The resulting enhancement factor (L1C)/L is plotted in
dashed lines in Fig. 7~a! as a function of the horizontal dis
tance, and in Fig. 7~b! for a measurement on top of an e
plosion source as a function of the depthz0. Note that the
enhancement never reaches its maximum value 2, not e
when z050. In an infinite medium, a measurement of a
component of the displacement vector of waves release
an explosion source would have had no enhancement a
near the source@43#. Here, the finite enhancement is due
the nearness of a free surface.

The enhancement factor can be restored by a meas
ment of the dilatation (divu) in which case,

L~x,t !;
exp~2vt/Q!

Dt
B~v!2

3(
i

ni udiv ui~0!u2(
j

nj udiv uj~z0!u2,

C~x,t !;B~v!2
exp~2vt/Q!

Dt

3U(
i

nidiv ui~0!div ui~z0!* J0~ki•x!U2

. ~50!

A measurement of the dilatation restores the symmetry
tween detector and source, and reveals the maximum
hancement factor 2 when the detector is located close to
source as shown in solid lines in Figs. 7~a! and 7~b!.

C. Dipolar source

We next consider a single couple at the surface with n
mal displacement vector, and axis along thex axis. This
source can be represented by the dipolef(r ,t)
;d(v) ẑ]xd

(3)(r2r0). Such a source can be generated w
03660
o-
nt

en

by
all
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e-
n-
he

r-

laser interferometry on an elastic plate, and the resulting
herent backscattering effect was recently studied experim
tally by de Rosnyet al. @44#.

The spatial derivative in the source finds its way in t
Bessel functions, in the same way as was done in ea
work for the infinite system@43#. We derive, again for a
measurement of the displacement vector in the direction n
mal to the surface,

L~x,t !;
exp~2vt/Q!

Dt

1

2
d~v!2

3(
i

ni uui ,z~0!u2(
j

nj uuj ,z~z0!u2kj
2 ,

C~x,t !;
exp~2vt/Q!

Dt
cos2f d~v!2

3U( nikiui ,z~0!ui ,z~z0!* J1~kix!U2

. ~51!

FIG. 7. Plot of the coherent backscattering enhancement fo
isotropic explosion source near the free surface. Both the di
gence~solid line! and the normal component of the field~dashed
line! are measured.~a! Plot of the backscattering cone.~b! Plot of
the enhancement factor atx50 as a function of the source depthz0.
The enhancement factor only reaches its maximal value of 2 if
divergence of the field is measured and if the source is close to
surface.
i
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Two things can be noted. First,C vanishes anywhere abov
the source (x50). The enhancement is destroyed beca
the dipolar nature of the source is in some sense ‘‘ortho
nal’’ to the detection of the displacement vector. Maximu
enhancement actually occurs a fraction of a wavelength a
from the source as shown in dashed line in Fig. 8~a!. Second,
the coherent enhancement around the source has a c2f
struc-ture, withf the azimuthal angle between the dipo
or
n
ol

or
-

03660
e
-

ay

s

axis of the source and the direction of detection. T
‘‘double-well’’ structure was observed by de Rosny, Tour
and Fink@44#.

The coherent enhancement factor can be restored b
modification of the measurement. Suppose we measure
parameter]xuz(r ,t). This measurement has the same sy
metry as the dipolar source. We find for background a
coherent enhancement,
L~x,t !;
exp~2vt/Q!

Dt

1

4
d~v!2(

i
niki

2uui ,z~0!u2(
j

njkj
2uuj ,z~0!u2,

C~x,t !;
exp~2vt/Q!

Dt
3d~v!2U(

i
niki

2ui ,z~0!ui ,z~z0!* FJ1~kix!

kix
2J2~kix!cos2fGU2

. ~52!
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For x50 andz050 we infer thatL5C, i.e., the maximal
enhancement can now be reached. The plot of the rest
enhancement factor as the function of the horizontal dista
and as the function of the source depth are shown in s
line in Figs. 8~a! and 8~b!. Note that the line profile is still
not cylindrically symmetric, but depends onf.

FIG. 8. Plot of the coherent backscattering enhancement f
dipolar source. Both]xuz(r ,t) ~solid line! and the normal compo
nentuz(r ,t) of the field ~dashed line! are measured.~a! Plot of the
backscattering cone.~b! Plot of the enhancement factor atx50 as a
function of the source depthz0.
ed
ce
id

D. Double-couple source at depth

Seismic sources have successfully been modeled as
compensating couples~dipoles! @14#. To facilitate observa-
tion of coherent backscattering with seismic waves we w
here obtain the enhancement expected for such a so
close to a free surface. In view of the complexity of th
problem, we will restrict ourselves to a seismic plane tha
oriented parallel to the free surface where detection ta
place. The depth of this plane is located atz0.

The force field of a double-couple source is described
a symmetric, off-diagonal seismic tensor. We assume that
two dipoles are orthogonal and along the axesx andy. The
force field is then given by

f~r ,v!5M ~v!~ x̂]y1 ŷ]x!d~r2r0!, ~53!

with r05(0,0,z0). We can easily check that the mode repr
sentation of the source~28! is Si ,k5vM (v)@kxui ,y(z0)
1kyui ,x(z0)#. We will assume that the measured parame
is ]y8ux81]x8uy8 , i.e., a certain horizontal component of th
stress tensor; (x8,y8) are the coordinates in a frame that h
been rotated over an angleb with (x,y) ~see Fig. 9!. The
displacement vector of a mode (ik) can be expressed as

uik~z!5$ui ,z~z!ẑ1ui ,i~z!

3@cosa i k̂1sina i ẑ3 k̂#%exp~ ik•x!, ~54!

which introduces a new anglea i independent of the direction
k of propagation and of depth. Lamb waves havea i50
whereas SH waves havea i5p/2. We definef as the angle
betweenk and thex axis, i.e., k̂5cosfx̂1sinfŷ. Finally,
the anglem fixes the direction of measurementx in the hori-
zontal plane with respect to the source~see Fig. 9!.

a
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The incoherent background is calculated from

L~x,t !;
exp~2vt/Q!

Dt
M ~v!2(

i
E d3k@]x8uik,y8~0!

1]y8uik,x8~0!#2Im Gik~v!

3(
j
E d3k8@]xuj k8,y~r0!

1]yuj k8,x~r0!#2Im Gj k8~v!, ~55!

whereas the coherent enhancement follows from

C~x,t !5
exp~2vt/Q!

Dt
M ~v!2

3U(
i
E d3k@]x8uik,y8~0!1]y8uik,x8~0!#

3@]xuik,y~r0!1]yuik,x~r0!#Im Gik~v!U2

.

~56!

Thesek integrals can be evaluated straightforwardly and
simply quote the final result,

L~x,t !;
exp~2vt/Q!

Dt

1

4
M ~v!2

3(
i

niki
2uui ,i~0!u2(

j
njkj

2uuj ,i~z0!u2. ~57!

Here, ui denotes the complex amplitude of the horizon
component of the displacement vector. The coherent par

FIG. 9. The angles involved in the measurement of the ba
scattering cone for a dislocation source at depthz0. See text for
discussion,a i50 for Lamb waves anda i5p/2 for SH waves.
03660
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C~x,t !;
exp~2vt/Q!

Dt

1

4
M ~v!2

3U(
i

niki
2ui ,i~0!ui i~z0!* @cosb J0~kix!

2cosqiJ4~kix!#U2

, ~58!

with qi54m13b for Lamb waves andqi54m13b1p for
SH waves. Since theJ4 term is very small, the line profile is
almost isotropic aroundx50, independent ofm , and maxi-
mal for b50. The enhancement factor (L1C)/L is plotted
in Fig. 10~a! as a function of the horizontal distance fo
different source depth and in Fig. 10~b! as a function of the
source depthz0 for a measurement on the top of the sourc
It is interesting to notice the relatively large second ma
mum of the coherent backscattering for a source ax
50.7ls away from the detector (x'1.2 km).

VII. CONCLUSIONS AND OUTLOOK

In this paper we have investigated multiple scattering
elastic modes in a two-dimensional solid plate with a thic
ness less than the mean free path of the waves. Contra

-

FIG. 10. Plot of the coherent backscattering enhancement f
double-couple source with both its axes along the free surface.
orientation of the detection is such thatb50 andm50. ~a! Plot of
the backscattering cone for different source depthsz050, z0

5ls/3, andz05ls/2. ~b! Plot of the enhancement factor atx50 as
a function of the source depthz0.
1-14
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other approaches, this model facilitates an exact treatme
the boundary conditions at both sides of the plate, i.e., on
level of the elastic wave equation. At the same time, we
describe the horizontal transport of waves, as well as
intermode mixing, by a radiative transfer equation for elas
modes, which can be solved with conventional methods.

Using this equation, we have investigated different
pects, such as surface detection, mode extinction times
uipartition, polarized sources at different depths in the pla
and coherent backscattering. More concretely, we have
culated the extinction times of the different modes, and c
cluded that if the fluctuations of the two Lame´ coefficients
are comparable, many modes have a lifetime that is com
rable to theS-wave extinction time in an infinite elastic 3D
random medium. This is explained by the fact that the
modes are either pure shear~SH! waves, or have an evane
cent P component. Only the surface waves, evanescen
both P and S, and Lamb modes with an significantP com-
ponent throughout the layer, have a longer lifetime.

We have also considered the symmetric mode-mode
lision matrix that determines the dynamics of the intermo
scattering. ForN modes it hasN eigenvalues, among whic
one vanishes by energy conservation. The correspondin
genvector represents the universal asymptotic mode occ
tion of any multiple scattering process with arbitrary sour
with the important property of equipartition@17,33–36#. The
other eigenvalues, whose order of magnitude equals the
tinction rate ofS waves in an infinite 3D random medium
determine the dynamics of the equipartition process. T
depends on the initial excitations of the different modes, i
on nature and location of the source, and has been illustr
for explosions and ‘‘double-couple’’ sources at differe
depths. We have noticed that the energy released by an
plosion takes a much longer time to reach equipartition.

Finally, our model facilitates the study of an importa
contemporary mesoscopic feature, coherent backscatte
in the presence of surface detection. This phenomenon
sults from the constructive interference of long wave path
the random medium. It is well known from previous wo
that this phenomenon is heavily dependent on detector
source, in particular with respect to the polarization of t
-

ry

s.
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waves@43#. The nearby presence of a~free! surface adds an
additional complexity, which can only be handled using o
quasi-2D approach. The exact amount of constructive in
ference changes considerably as a function of source d
and source distance, and is also substantially different
different sources~force, dipole, explosion, double couple!.
The study presented in this paper contributes to the gen
understanding of coherent backscattering and might be
plied to model future experiments@45,46#.

One potential application of our model concerns t
propagation and scattering of seismic waves in the Ear
crust in the frequency band 1–10 Hz. The mean free pat,
of seismic waves is typically estimated to be equal to 50
100 km, whereas the crust depthH is around 30 km. Thus the
basic criterion,@H for the quasi-2D approximation to hol
seems to be met. Our study could predict how fast the
ferent guided modes mix up and finally reach equipartitio
We recently observed equipartition of seismic waves a
found quantitative agreement with the present model@17#.
One complication is the presence of leaky modes, i.e., mo
whose frequency is complex valued. The approach prese
in this paper is not directly adapted to handle them, althou
it should apply to the guided waves in the crust. We c
show that leaky waves can be included in our model@13#,
provided that either the leaking is weak~i.e., the leaking time
is much greater thanH/v), or that the leaking time is rapid
compared to scattering~leaking time is much less than,/v).
One perspective is to understand the reported values for
decay of seismic Coda in terms of the individual qual
factors of the leaky modes@47#. In future studies we will try
to solve our transfer equation numerically using Monte Ca
methods.
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